《IDRA探讨海水淡化与水回用领域的技术进展、ESG整合、PFAS处理及公众接受度提升,并分析有效融资模式》

  • 来源专题:水与大气环境治理
  • 编译者: 胡晓语
  • 发布时间:2025-07-04
  • 在社会层面,公众的认知和接受度仍是阻碍水资源再利用的主要障碍,特别是在饮用水再利用方面。文化偏见和缺乏意识 even 在缺水地区也会拖延其应用。克服这些障碍需要采取协调行动,包括制定明确的政策、开展教育活动、提供投资激励以及通过像 IDRA 的雷克雅未克峰会这样的平台分享知识和建立全球势头,将再利用作为主流水资源解决方案。 在海水淡化领域,目前最有前景的技术进展主要集中在提高可持续性、效率和公众接受度上。技术方面的创新,如氧化石墨烯和高排斥膜的设计,大大降低了能耗和运营成本,使反渗透技术更加高效和易于获取。采用能量回收装置和批量反渗透配置也显著提升了性能,有些系统的能耗降低了超过80%。可再生能源的整合也非常重要,太阳能供电的淡化系统(包括MIT开发的无电池型号)和波浪能供电单元在离网和气候适应应用中显示出真正的前景,尤其对偏远和缺水地区至关重要。 另一个重大进展是环境管理方面的进步,特别是零液体排放(ZLD)和高回收系统的推广,这些系统能够最大限度地减少盐水浪费。类似IBTS温室的方法通过结合可再生能源、模块化设计和极低能耗,将环保理念推向了新高度。随着ESG(环境、社会、治理)标准在企业决策中的重要性日益增长,水密集型行业可以通过有效整合淡化和水再利用来改善其ESG表现。
  • 原文来源:https://smartwatermagazine.com/news/international-desalination-and-reuse-association-idra/leadership-water-means-listening-acting
相关报告
  • 《中新道与天津海水淡化研究所布局海水淡化领域》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:mall
    • 发布时间:2017-12-12
    • 近日,中新道控股有限公司与国家海洋局天津海水淡化与综合利用研究所签署合作协议,双方就工程项目业务推广、技术开发及金融资本领域的合作达成战略合作伙伴关系。中新道在海水淡化领域的布局,引起业界的普遍关注。   2017年下半年以来,如何实现海水资源化引起了水处理业内和资本市场的高度关注。随着水处理产业向纵深挺进,海水淡化领域越来越受资本追捧。但在淡化海水不断扩张的过程中,技术路径、运营成本的问题则困扰着海水淡化的进一步发展。随着我国相关扶持政策与产业逐步成熟,海水淡化行业将逐渐告别以往低迷回归理性,并向着规范化方向发展。 业内普遍认为,未来在海水淡化项目、水资源循环利用、膜设备等产业链环节有望催生出体量较大的投资空间。   随着近年来国家将海水淡化行业的发展提升到战略层面,出台了一系列利好政策,同时还通过PPP的方式在供给侧和需求侧融合时给予补贴,国内海水淡化市场快速发展,需求开始凸显出爆发式增长。2016年底,印发的《全国海水利用“十三五”发展规划》提出,全国海水淡化总规模达到220万吨/日以上。   国家海洋局天津海水淡化与综合利用研究所具有海水淡化、化水处理、中水废水处理、矿泉水、纯净水、超纯水制备等工程涉及和施工经验。中新道以金融服务资源、带动实业发展的战略,在中国经济新常态下实现资源有效整合,构建“金融+产业”相结合的新型投资控股企业。 .
  • 《燃煤电厂废水零排放处理技术探讨》

    • 来源专题:水体污染治理
    • 编译者:王阳
    • 发布时间:2019-01-17
    • 摘要:电厂废水处理零排放系统在实际运行过程中,具有出水水质稳定、达标,在投资、运行、管理等方面与常规技术相当的特点。废水处理零排放系统能够有效的解决电厂废水排放与废水回收再利用的问题,具有一定的经济和环保价值,符合当前节能环保的理念,满足当前环保政策要求。 关键词:燃煤电厂;废水零排放;废水处理;工艺 引言 随着水污染控制技术的进步和污染物排放标准的日益提高,废水直接排放将受到限制。火电厂生产过程中产生的废水,如辅机冷却水、冲洗水、再生酸碱废水、含煤废水、生活污水等经处理后进行回收利用,因此,火电厂废水零排放的重点和核心是高含盐量废水的终端处理。本文介绍了高盐废水零排放处理技术研究和应用现状,重点分析了各种处理技术的优缺点和适用条件,以期为相关研究和工程项目的实施提供参考。 1 燃煤式发电厂废水处理面临的问题 1.1 老旧燃煤式发电厂排水废水改造费用高、难度大 近些年,新建的燃煤发电厂从设计、建设、运行等方面均考虑了废水问题,并且取得的效果显著,但对于部分老旧燃煤式发电厂,其废水改造费用高、难度大。较早建立的燃煤式发电厂,在设计时没有考虑废水方面的问题,所采用的工艺技术也比较落后,已不能满足当前环保要求。电厂在废水改造时需要整体更新原有设备,改造费用较高,电厂承担的经济负担重。此外,由于电厂基建资料严重缺失和地下管网系统复杂,也增加了改造的难度。 1.2 废水处理产生的盐类急需解决 在燃煤式发电厂废水处理过程中,通常把废水中的盐类与水进行分离,分离后得到的纯净水可重复利用。得到的盐类大致有两种处理方法。一是分离后盐类处理达到工业盐的标准进行使用。二是与灰渣进行混合使用。但第一种处理方法通常由于品质不稳定、产量不高等原因,无法稳定使用;第二种方法中灰渣可能混有盐中水份,影响灰渣的利用。目前电厂还没有更好处理盐类的方法,相关部门也没有对此部分盐类做出明确规定,随着我国环保政策的出台,将有明确的方法和技术来处理这部分盐类。 2 废水减量化处理技术 2.1 反渗透膜技术 反渗透膜技术是20世纪60年代兴起的一门新型分离技术,是目前最为先进的分离技术之一,应用广泛。反渗透是渗透的逆过程,它主要是在压力的推动下,借助半透膜的截留作用,迫使溶液中的溶剂与溶质分开的膜分离过程。反渗透膜技术具有净化效率高、成本低和环境友好等优点,使得它在近几十年的时间里发展非常迅速,已经广泛应用于海水和苦咸水淡化纯水和超纯水制备、工业或生活废水处理等领域。反渗透膜技术的主要缺点在于废水中杂质沉积造成的膜污染和膜氧化,而且膜的截留性能仍需进一步提高。 2.2 正渗透膜技术 正渗透膜技术属于膜分离过程。水从高水化学势区通过选择性渗透膜向低水化学势区进行转移。选择性渗透膜分隔的高水化学势区和低水化学势区所存在的渗透压差是正渗透过程的驱动力。正渗透技术具有低能耗、较高的水通量和回收率、不易结垢和可处理高浓盐水等优点。 在废水处理方面,正渗透的高水化学势区为待处理的废水,低水化学势区为待定选择的汲取液。正渗透技术的难点则在于高水通量、良好的耐酸碱性和机械性能的选择性渗透膜以及能产生较高渗透压及水通量的汲取液的选择。华能长兴电厂引进了正渗透膜技术处理脱硫废水,18m3/h的脱硫废水可以浓缩至3~4m3/h,浓水中污染物质可全部以结晶和污泥的形式分离,废水100%回用。运行中蒸汽、药剂、电的消耗量大大降低,处理1t废水的能耗由传统蒸发结晶法的20~40kW•h降低到10kW•h,运行成本降低30%。 2.3 膜蒸馏技术 膜蒸馏是一种新型的分离技术,是以疏水性微孔膜两侧蒸汽压差为传质推动力的膜分离过程。 其特征是:膜是微孔膜;膜不能被所处理的液体浸润;膜孔内无毛细管冷凝现象发生;只有蒸汽能通过膜孔传质;膜不能改变操作液体中各组分的汽液平衡;膜至少有一侧要与操作液体直接接触;对每一组分而言,膜操作的推动力是该组分的气相分压梯度。 膜蒸馏技术具有不易被污染、操作压力低、预处理简单、产水品质高和可处理高浓度盐水等优点。但该技术也存在能量利用率较低、膜通量较小和膜污染与膜润湿等问题。目前,该技术在大规模应用上仍然不成熟,包括大规模应用下的安装、长期运行、经济效益和结垢污染等情况仍需要进一步探究。 3 废水终端处理技术 3.1 蒸发塘技术 蒸发塘技术是依靠太阳能在自然状况下蒸发地面上的高盐水,使其浓缩达到饱和后结晶析盐。该技术适用于西北干旱少雨的地区,具有成本低、运营维护简单、使用寿命长和抗冲击负荷好等优点。但该技术的缺点同样明显,原浓水中所含挥发组分直接进入空气易造成空气污染,应做好防渗透和防溢流处理措施,占地面积大且淡水无法回收利用等。 鉴于蒸发塘技术的自然蒸发效率较低,并容易产生满塘的危险,研究人员开发了机械雾化蒸发技术。在蒸发塘中安装适当数量的机械雾化蒸发器,通过高效雾化喷嘴向空气中喷洒,加速水分的蒸发。这种技术可以将蒸发效率提高14倍以上。目前,该技术已在内蒙古一家废水处理公司成功投运。 3.2 多级闪蒸技术 多级闪蒸技术是将原料海水加热后依次引入到若干压力逐级降低的闪蒸室中,使其逐级蒸发降温,热盐水逐级浓缩,温度也逐级降低到接近天然海水温度,所产生的蒸汽冷凝后即为所需的淡水。该技术可靠性高、防垢性能好、易于大型化,但也存在设备腐蚀快、能耗高、传热效率低和操作弹性小的缺点。多级闪蒸技术投资成本较高,只有在大规模使用的情况下才具有较高的经济效益。因此,目前该技术一般应用于海水淡化处理,在电厂废水处理方面尚没有应用先例。 3.3 多效蒸发结晶技术 多效蒸发技术是在单效蒸发的基础上发展起来的蒸发技术,分低温和高温多效蒸发。低温多效蒸发是指盐水的最高蒸发温度不超过70℃,其特征是将一系列的管道与膜蒸发器串联起来,分为若干效组,用一定量的蒸汽通过多次的蒸发和冷凝,从而得到多倍于加热蒸汽量的过程。低温多效蒸发主要优点是操作温度低,可充分利用电厂的低温废热(50~70℃的低品位蒸汽均可作为理想的热源);热效率高;动力消耗小,只有0.9~1.2kW•h/m3左右;操作弹性大。然而,该技术设备体积一般较大,投资成本较高,系统往往比较复杂。 3.4 烟道蒸发技术 烟道蒸发技术是通过高温烟气的加热,将废水固液分离,气态水蒸汽随烟气进入脱硫吸收塔利用;废水中的污染物随水分结晶为固态颗粒,同烟气中飞灰一起被除尘器捕捉、收集,进入烟尘干灰中,分为主烟道蒸发和旁路烟道蒸发。该技术优点是系统简单、投资成本和运行成本较低,无新增固废产生;缺点是抽取的烟气占煤耗比重。目前,该技术已在华能上都电厂、焦作万方自备电厂成功应用。 结束语 当前,我国废水排放标准的要求日益严格,尤其是最新颁布的《水污染防治行动计划》(简称“水十条”),更是将水环境保护上升到了国家战略层面。火电企业作为用水、排水大户,其用水量占工业用水总量的20%,从经济运行和保护环境出发,节约发电用水,提高循环水的重复利用率,实现火电厂废水“零排放”意义重大。 参考文献: [1]钱感,关洪银.燃煤电厂脱硫废水综合处理工艺[J].水处理技术,2017,43(02):136-138. [2]李兵,张其龙,王学同,周灿.燃煤电厂废水零排放处理技术[J].水处理技术,2017,43(06):24-28+33. [3]单涛.电厂废水零排放工艺路线探究[J].中国环保产业,2017(07):59-62. [4]曹蕃.燃煤电厂废水零排放技术路线研究[J].华北电力术,2017(12):56-62. [5]张利权.火力发电厂废水零排放设计监理[D].华北电力大学(北京),2017.