《广州能源所在稀土尾矿地生态能源农场修复模式研究方面获进展》

  • 来源专题:能源情报网信息监测服务平台
  • 编译者: guokm
  • 发布时间:2022-11-27
  • 江西赣州素有“稀土王国”之称,拥有全国80%以上的离子型稀土资源,尤其是铽、镝等多种重稀土元素为我国南方地区的独有珍稀矿种。自20世纪70年代开展开采以来,稀土资源为国家经济发展和战略安全发挥了极为重要的作用。但是长期开采导致矿区植被和矿床表面腐殖层被剥离、破坏,并且酸性浸出液的大量使用引发矿区生态退化和诸多环境问题,尤其是池浸、堆浸等早期工艺产生的大量尾矿未能妥善处置,致使周边土地及水体遭受不同程度破坏和污染。

      针对稀土尾矿地土壤酸化沙化严重、土壤养分贫瘠及微生态功能丧失等问题,中国科学院广州能源研究所生物质能生化转化研究室以适宜当地气候的能源植物为修复植物,建立了“能源植物种植-土壤生态修复-厌氧发酵制气-沼液回施/沼渣高值利用”为核心的生态能源农场修复模式。项目组研究发现:在可持续修复区,采用沼液施用草本类能源植物可在3年内显著提升稀土尾矿地的土壤养分及微生物多样性,初步恢复土地生产力,相关指标优于自然修复区的土壤样品。非度量多维尺度(NMDS)分析表明土壤微生物群落的变异主要受到土壤理化性质变化和修复植物种类差异的影响;方差分解分析(VPA)发现土壤养分是影响细菌和真菌群落变异的关键因子;并且细菌群落对土壤养分变化的响应要快于真菌群落。此外,土壤养分提升明显改变了寡营养和富营养微生物的比例,其中:富营养型微生物变形杆菌门(Proteobacteria)、拟杆菌门(Bacteroidetes)、芽单胞菌门(Gemmatimonadetes)和球囊菌门(Glomeromycota)显著增加。微生物互作网络分析进一步显示,富营养型微生物增加可提高微生物互作网络拓扑特性,增强其网络稳定性;来自变形杆菌门(细菌)和子囊菌门(Ascomycota,真菌)等富营养型微生物的菌株已经成为构建稳定网络结构的主要关键物种(Major keystone species)。此外,以草本类植物为修复植物还可增加子囊菌门在互作网络中的比例,并与细菌协同提高互作网络的拓扑特性。

      该研究工作得到国家自然科学基金和江西省重点研发计划项目等的支持。相关成果发表于Science of the total environment。

相关报告
  • 《金属所在稀土回收研究方面取得进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2020-04-20
    • 稀土是制备高新材料的关键基础材料。在众多稀土功能材料中,磁性材料应用最广,主要包括稀土永磁、磁致伸缩及磁致冷材料等。稀土永磁材料钕铁硼被广泛应用于清洁能源汽车、风力发电、节能家电、工业电机、轨道交通、电子信息等民用产品领域,以及电子对抗与干扰、导航系统、航空航天等高科技领域,是实施制造强国战略的关键材料之一。 大多数稀土磁性材料是由稀土元素与 3d 过渡金属 TM 3d 构成的金属间化合物,如 Nd 2 Fe 14 B 、 Sm 2 Co 14 、 TbDyFe 等。这些合金材料中稀土含量较高,制备 1 吨稀土永磁材料钕铁硼,需约 0.3 吨稀土(包括钕、镨、镝、铽等)。在我国稀土年消耗量中,超过 40% 的稀土用于制备钕铁硼。这导致我国稀土资源利用极不平衡,稀土磁性材料高度依赖的钕、镨、镝、铽、钐等低丰度昂贵稀土日益紧缺。 回收废钕铁硼是化解关键稀土元素供给危机和保持我国稀土资源全球优势的有效办法。从稀土废料源头来看,钕铁硼占绝大多数。钕铁硼废旧料主要来源于材料制备过程中产生的废料(废品量约为 30% ),以及因更新而被淘汰的废旧产品。钕铁硼中 Nd 2 Fe 14 B 为主相,稀土与过渡金属原子间形成较强的键能。钕铁硼含有改善其综合性能的镨、镝、铽、钴、铝、铜等其它元素,为了避免氧化,通常在钕铁硼产品表面电镀金属层。因此,提取钕铁硼废旧料中的稀土具有难度,尤其如何实现稀土与其它金属的绿色高效分离以及高值化再利用是关键。 近年来,金属研究所材料特种制备与加工研究部赵九洲研究组何杰博士领衔开展了 钕铁硼废旧料回收新技术研究。基于金属原子间的相互作用,研制了一系列用于选择性自发溶出钕铁硼中稀土元素的捕集剂,揭示了稀土元素在钕铁硼 / 捕集剂界面间的扩散行为及其控制方法,提出了钕铁硼“稀土无酸自组装溶出”新方法,建立了钕铁硼循环再利用技术路线,回收获得了各种稀土氧化物产品和铁硼合金。研究实现了将钕铁硼中的所有稀土元素在数分钟内“一步式”选择性提取,总提取率大于 97% 。钕铁硼中稀土被提取后,残余物为铁硼合金(由铁、硼、钴、铜和铝等元素组成,其中铁含量约 95% 、氧含量低于 20ppm ),精炼后可以循环再利用或用作特种钢材。与“盐酸优溶”等传统方法比较,本研究的“稀土无酸自组装溶出法”避免了钕铁硼中铁、硼等与稀土一同焙烧氧化和强酸浸出,缩短了工艺流程和周期,大幅减少了强酸使用和废液排放量,实现了二次固废酸性赤铁渣( Fe 2 O 3 )的零产生及铁资源的高值转化,有效提高了稀土的回收率,具有更优的经济和环境效益。“稀土无酸自组装溶出”可与“萃取分离”联合使用,在短流程、低成本和环保前提下,回收得到满足市场要求的纯度约 99.5% 的单稀土金属氧化物产品。 该方法普适性强,不仅可处理稀土永磁材料钕铁硼和钐钴合金,也可回收 由稀土 RE 和 3d 过渡金属 TM 3d 构造的其它 RE-TM 3d 基稀土磁性材料,以及镍氢电池电极材料。除了废钕铁硼,还对稀土熔盐电解渣开展了循环再利用研究,获得了含量不低于 99% 的 镨钕氧化物产品。目前研究团队正与企业合作开展稀土回收方面的研究,旨在推进该项技术的实际应用。 相关工作得到了国家自然科学基金项目的资助。
  • 《广州能源所在过冷解除过程中冰晶演化规律研究方面获得进展》

    • 来源专题:能源情报网信息监测服务平台
    • 编译者:guokm
    • 发布时间:2023-04-10
    • 近日,中国科学院广州能源研究所储能技术研究室冯自平研究员团队在中国科学院先导专项课题等支持下,在过冷解除过程中冰晶演化研究方面取得进展。相关成果以 Investigation on the evolution of ice particles and ice slurry flow characteristics during subcooling release 为题发表于传热传质领域国际学术期刊International Journal of Heat and Mass Transfer。   冰浆(ice slurry)是一种由冰晶和水或水溶液组成的二元溶液,具有良好的换热特性和独特的流动特性,在冷能储存和运输方面具有显著优势。可控过冷相变技术是实现高效快速连续制冰浆的关键,本研究创新地采用数值模拟的方式研究过冷驱动下冰浆中冰晶粒径的演化规律。储能技术研究室基于该研究搭建的过冷式冰浆实验平台,能够实现高效连续制取冰浆。   研究基于计算流体力学,将数群平衡模型(Population Balance Model, PBM)与Euler-Euler两相流模型耦合,探究了过冷水冰浆在水平直管中的冰粒演化及流动特性。重点研究了由过冷解除导致的冰晶生长,同时还考虑了冰晶的团聚和破碎行为对其粒径的影响。研究发现,相较于团聚和破碎行为,过冷驱动下的冰晶生长作用对其粒径演化最为明显。与此同时,过冷水由过冷态到相平衡态的温度变化与冰粒直径变化规律相符。   本研究成果作为可控过冷相变技术中的重要一环,有望为冰浆制备过程中的促晶器设计、冰堵预防等技术问题提供解决方案。