《前沿 | 用于光谱和实际应用的中红外强飞秒光脉冲》

  • 来源专题:光电情报网信息监测服务平台
  • 编译者: husisi
  • 发布时间:2022-11-23
  • 图:11.4µm OPCPA脉冲性能。平均功率为65 mW。左插图:远场强度分布。右插图:几个周期脉冲的时间脉冲形状

    一种新的光源产生波长约为12µm的超短红外脉冲,其峰值强度和稳定性此前未达到。首次在水上进行的振动光谱实验证明了该系统的强大的应用潜力。

    超短光脉冲是基础研究中的一个重要工具,也已进入许多光学技术。波长超过1µm的红外光谱范围在光通信中起着关键作用,而在光学测量和分析技术以及成像技术中需要波长高达300µm的脉冲。

    只有少数光波振荡周期的极短脉冲是一项极具挑战的技术。它们的产生需要精确控制光学相位及其传播条件。波长超过10µm的周期脉冲对于凝聚态物质(即固体和液体)的非平衡性质的基础研究非常重要,并且具有很高的应用潜力,例如在光学材料加工中。因此,产生这样的脉冲是一个前沿研究课题。

    Optica上,研究人员报告了一种新的光源,该光源能够以创纪录的参数提供超过10µm波长的超短红外脉冲。该极其紧凑的系统基于光学参数啁啾脉冲放大(OPCPA)的概念,其中通过与非线性晶体中较短波长的强泵浦脉冲的相互作用来放大微弱的超短红外脉冲。

    图:液态水的非线性传输(a)水的吸收(黑色)和11.4µm脉冲(能量:25µJ)入射(红色)和透射(绿色)光谱。(b) 水的透射作为入射脉冲能量的函数,表现出非线性透射增加

    在新型光源中,波长为2µm、持续时间约为3ps的泵浦脉冲驱动泵浦能量为6mJ的三级参量放大器。波长约12µm的放大脉冲具有65µJ的能量和185fs的持续时间,对应于光波约5个光学周期内约0.4千兆瓦(1 GW=109 W)的峰值功率。在1kHz序列中,脉冲高度稳定,光束质量优异。系统的输出功率和重复率是可扩展的。

    在液态水上的实验中证明了这种光源的潜力。第一次,水分子的受阻旋转,即所谓的平动,被激发到这样的程度,以至于它们的光吸收显著降低。根据对该吸收饱和的分析,估计具有20至30fs的平动激发寿命。

相关报告
  • 《前沿 | 基于时间透镜的片上超快飞秒脉冲激光器》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2022-11-28
    • 集成飞秒脉冲和频率梳源是包括微波光子学、光谱学、频率转换、激光雷达等在内的广泛应用的关键组件。科学家们一直以来都希望构造一种可以集成到芯片上的高质量超快脉冲光源。但是目前可以发射超快脉冲的可调谐飞秒激光器体积过大,不能有效集成到半导体晶圆上。 近日,美国哈佛大学的研究人员成功将飞秒脉冲源集成到由铌酸锂制成的光子芯片上(Nature, doi: 10.1038/s41586-022-05345-1)。他们使用级联低损耗电光振幅和相位调制器以及啁啾布拉格光栅chirped Bragg grating,形成时间透镜系统。该器件由连续波分布反馈激光器芯片驱动,并由单个连续波微波源控制,无需任何稳定或锁定。实验测量了520-fs脉冲序列,重复频率为30千兆赫,平顶光谱具有12.6纳米的10分贝光学带宽,单个梳线功率高于0.1毫瓦,脉冲能量为0.54皮焦。 图 时间透镜将连续波单色激光束转换为高性能片上飞秒脉冲源 传统的透镜通过衍射,也就是改变光线的相位来将其聚焦在一个焦平面上。另一方面,时间透镜以类似的方式“弯曲”光束,但它们在时间而不是空间上改变光束的相位。通过这种方式,以不同速度传播的不同颜色的光被重新计时,以便它们都同时到达焦平面。时间透镜系统从激光芯片中获得连续波单色激光束,并通过一个振幅调制器、相位调制器和色散介质运行。首先,连续波单色激光通过振幅调制器,该调制器可以控制通过时间透镜的光量以适应时空 "孔径",这一功能类似于传统透镜中的光圈。然后,光通过透镜的“弯曲”部分传播,在相位调制器的作用下产生不同颜色的频率梳。最后,光沿着波导进入鱼骨光栅,通过群延迟色散改变了不同波长光的速度,以便它们同时到达焦平面。 研究团队将上述三个元件集成到了由2 微米厚的衬底支撑的600 纳米厚的铌酸锂薄膜上的25×4 毫米的空间。据研究人员称,该器件可高度调谐,由于铌酸锂的电光特性,所需功率显著降低。该研究的第一作者Mengjie Yu在一份报道中表示,随着设备变得更小、更集成,节省空间的同时也节省了能源,性能也会越来越优异。 接下来,研究团队计划探索这种超快飞秒脉冲激光器的一些应用,比如光学时钟、天文光谱仪、量子网络等。
  • 《红外激光脉冲新技术》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2020-11-26
    • 固态激光器产生的激光多在可见光的范围,比如激光笔。许多应用需要中红外激光,如分子探测等。而生成红外激光较为困难,尤其是超短、高强脉冲的红外激光。 很长一段时间以来,科学家们都在寻找一种制造红外激光脉冲的简单办法。如今,维也纳技术大学与哈佛大学合作,成功输出了超短红外激光脉冲。这种新技术无需任何大型实验设备,体积可缩小,对于某些应用来说十分重要。此项研究结果发表于Nature Communications。 频率梳 “在维也纳技术大学的纳米中心,我们使用经过设计的量子级联激光器生成了红外激光。” 维也纳技术大学固态电子研究所的Johannes Hillbrand说,他是本文的第一作者。寻常的固态激光器中,所发出的光的种类取决于材料中的原子种类,而在量子级联激光器中,纳米尺度的微结构起决定性作用。通过精心设计这些微结构,可以精确调整激光波长。 “我们的量子级联激光器不是只发出单一颜色的光,而是发出一系列不同频率的光。” Benedikt Schwarz副教授说,他领导了此项由欧洲研究委员会资助的研究项目。“这些频率排列得很有规律,其间距如同梳子的齿一般,是固定的。因此这种频谱被称为频率梳。” “钟摆”光 不仅是量子级联激光器发出的频率起到决定性作用,每个频率光波的相位也起决定作用。“就像两个由橡皮筋连接的钟摆,” Johannes Hillbrand解释道。“两个钟摆可以以完全相同、或者相反的方向前后摆动,所以它们要么向对方摆动,要么向远离对方的方向摆动。这两种振动模式的频率略有不同。” 这与由不同波长组成的激光非常相似:频率梳的单个光波可以完全同步振荡、以最佳相位叠加,产生短而强的激光脉冲;或者其振荡之间存在相位差,此时不会产生脉冲,而是产生强度基本均匀的激光。 光学调制器 Johannes Hillbrand说:“以往的量子级联激光器很难在这两种模式之间切换。然而,我们在量子级联激光器中嵌入了一个小型调制器,光波反复穿过这个调制器;同时在调制器上施加一个交流电压,根据电压的频率和强度不同,可以在激光中激发不同的光振荡。 Benedikt Schwarz说:“使用合适的频率驱动调制器,可使频率梳的不同频率完全同步振荡。而这使这些频率有可能组合成短而强的激光脉冲,可达超过每秒120亿次。” 在此之前,半导体激光器基本不可能实现如此短的短红外激光脉冲。如此短的光最多只能通过成本高昂、高损耗的方法产生。“我们的技术还有一个关键优势,即可以小型化。”Benedikt Schwarz强调。“比如,这项技术可以用于小型测量仪器中,使用特殊的激光束来检测气体样本中的特定分子。激光脉冲的高光强,使得同时需要两个光子的测量也成为可能。”