《脑智卓越中心揭示NMDA受体功能多样性的分子基础》

  • 来源专题:生物育种
  • 编译者: 姜丽华
  • 发布时间:2023-04-13
  • 3月24日,Nature Structural & Molecular Biology在线发表了中国科学院脑科学与智能技术卓越创新中心竺淑佳研究组撰写的题为Distinct structure and gating mechanism in diverse NMDA receptors with GluN2C and GluN2D subunits的研究论文。该研究结合单颗粒冷冻电镜、质脂体单通道记录、电压钳记录、分子动力学模拟、质谱分析、生化验证等多维度技术,揭示了含GluN2D亚基NMDA受体的门控机制和功能特征,诠释了含GluN2C亚基NMDA受体的不对称几何构象及特异性变构调节的机制。该研究为深度理解NMDA受体不同亚型的功能多样性及开发亚型选择性的小分子药物奠定了理论基础(图1)。

      NMDA受体是介导大脑突触信号传递和突触可塑性的离子通道,参与并调控神经系统的发育、学习和记忆,同时,其功能异常与诸多神经或精神疾病的发生发展密切相关,是药物研发的重要靶点。哺乳动物大脑中的不同亚型NMDA受体,其表达分布和生物物理学性质具有多样性。含有GluN2A或GluN2B亚基的受体具有较高的通道开放概率和较低的激动剂亲和力。相反,含有GluN2C或GluN2D亚基的受体具有较低的通道开放概率和较高的激动剂亲和力。然而,决定这些功能多样性的分子基础知之甚少。

      GluN2D富集表达于下丘脑、杏仁核等与情绪调节密切相关的脑区。竺淑佳研究组发现,GluN1-N2D受体具有一个比其他亚型更闭合的氨基端结构域,从而使它具有较低的通道开放概率。竞争性拮抗剂R-CPP能够通过撑开谷氨酸结合口袋,进而抑制离子通道的开放。GluN1上的可变剪接5号外显子可以使激动剂结合结构域扭转,从而提高离子通道的开放活性。鉴于GluN1-N2D受体的离子通道开放概率与GluN1-N2A受体相差50倍,研究基于结构在相互作用交界面引入一对二硫键,发现交联显著性地提高了GluN1-N2D受体的通道活性(图2a-d)。上述成果揭示了GluN1-N2D亚型的门控机制以及决定其生物物理特征的分子基础。

      研究进一步发现,GluN1-N2C受体采取了与经典NMDA受体所不同的特殊非对称构象。该特性决定了小分子药物PYD-106只能结合相同基因编码的两个GluN2C中的一个亚基(图2e、f)。此外,研究还解析了在小脑颗粒细胞中高表达的GluN1-N2A-N2C受体的结构。进一步分析发现,GluN1-N2A-N2C受体中的GluN2A和GluN2C亚基分别整合了对应二异四聚体中的一个单体构象(图2g)。该研究首次揭示了GluN1-N2C受体的特殊非对称几何学特性,阐释了小分子PYD-106选择性作用于GluN1-N2C受体的机制。

      研究工作得到科技部、国家自然科学基金委员会、中国科学院、上海市科学技术委员会的支持。

  • 原文来源:https://www.cas.cn/syky/202304/t20230407_4883348.shtml
相关报告
  • 《分子细胞卓越中心等揭示DNA柔性在抗体基因超突变中的生理功能》

    • 来源专题:生物育种
    • 编译者:姜丽华
    • 发布时间:2023-04-28
    • 4月24日,《细胞》(Cell)以Research Article的形式,在线发表了中国科学院分子细胞科学卓越创新中心孟飞龙研究组等撰写的题为Mesoscale DNA Feature in Antibody-Coding Sequence Facilitates Somatic Hypermutation的最新成果。该研究基于经典生化方法与高通量测序技术,建立了体外检测抗体基因超突变的一系列新方法,从而揭示了抗体基因互补决定区(CDR)通过高度柔性特征引发超高突变的分子机理。胞苷脱氨酶AID在B淋巴细胞中启动了抗体基因超突变,其蛋白表面具有大片正电荷片区;而抗体基因CDR编码区域DNA序列则在进化中获得了高度柔性的特征。酶与底物的协同进化共同促进了CDR区的超突变偏好。该工作为下一代抗体基因人源化动物模型的设计提供了底层理论。   抗体作为适应性免疫系统中的关键效应分子,时刻守卫着机体的健康。面对复杂多变的外界环境,机体的免疫系统通过抗体多样化机制产生数量庞大的抗体分子,从而特异性地识别和清除病原体。抗体多样化通常包含两个主要步骤:一是核酸内切酶RAG介导的的V(D)J重排过程,二是胞苷脱氨酶AID起始的体细胞超突变(SHM)和抗体类型转换(CSR)过程。体细胞超突变可在抗体基因的可变区编码区引入高频突变。然而,超突变在抗体可变区外显子上并非均匀分布,而偏好性积累在可变区中的互补决定区(CDR)。超突变为什么具有偏好性,这是免疫学家David Baltimore与Klaus Rajewsky在20世纪80年代提出的问题。近40多年来,该领域的科学家尝试从多个角度去解释这一现象,但尚未有令人信服的结论。CDR偏好突变科学问题的解决亟需引入新的概念。胞苷脱氨酶AID是一个仅含198个氨基酸的蛋白质。生化实验证明,AID作用于单链DNA底物,且偏好作用于WRC(W=A/T, R=A/G)基序。然而,WRC基序不能解释抗体基因CDR偏好超突变,这是由于同样的WRC基序在CDR编码区突变率超高。在CDR编码区的中尺度(5-50bp)中,AID可能受到局部序列的调控。   孟飞龙研究组长期致力于免疫受体多样化机制研究。在最新研究中,科研人员从经典的生化方法出发联合高通量测序技术,建立了体外检测抗体基因突变的新体系,发现了AID酶活反应重现小鼠体内抗体基因突变谱式。进一步,该研究将生化实验的DNA底物扩展到27种有颌脊椎动物的1000余条抗体基因序列,发现CDR突变偏好在使用体细胞高频突变(SHM)作为抗体主要多样化策略的四足动物(包括人、恒河猴、食蟹猴、小鼠、大鼠、狗、鸭嘴兽以及羊驼等)中高度保守。那么,这种突变偏好是否受DNA序列上下文的影响?   为了回答上述问题,研究人员在小鼠体内将一段抗体基因的DNA序列进行随机置换,发现序列改变后突变频率发生了显著变化。这提示不同的DNA序列上下文中可能含有未知的中尺度顺式因子,从而调控突变频率的作用。因此,研究通过基因编辑在CDR3区引入随机序列改变,快速获得十几种携带不同CDR3序列环境的小鼠模型,发现了序列改变越靠近CDR3区内的突变热点对该位点的突变频率影响越大。因此,研究继续将序列上下文范围缩小到突变位点上下游各12-15 nt。   通过分子动力学模拟和多种单分子生化实验,研究发现中尺度中DNA序列柔性越大越利于结合AID表面的正电荷片区,进而越有助于突变的发生。单链DNA的柔韧性与嘧啶-嘧啶二核苷酸的含量呈正相关。此外,通过分析抗体基因序列特征以及突变谱式,研究发现抗体基因CDR的编码序列在进化中获得了高度柔性的特征。科研人员分别在B细胞系和小鼠体内将一段柔性序列插入突变低频区FR,发现柔性序列提高了FR的突变频率。   综上,该研究解答了长期困扰这一领域的难题,发现了抗体基因CDR编码区DNA柔性促进偏好性突变的发生以及抗体基因编码序列具有调控AID突变靶向的非编码功能。这一工作为DNA力学性质参与调控细胞生命过程中提供了例证,并提示DNA柔性等力学性质可能在其他生命活动如肿瘤的发生发展中发挥重要作用。中尺度序列特征的发现,为设计下一代抗体基因人源化动物模型构筑了底层理论。   该研究由分子细胞卓越中心和上海交通大学医学院合作完成。上海师范大学科研人员在数据分析,上海交通大学科研人员在分子动力学模拟,美国哈佛大学科研人员在模型构建等方面作出了重要贡献。研究工作获得国家自然科学基金、科技部、中国科学院、上海市科学技术委员会等的资助,并得到上海交通大学、美国哈佛大学医学院、中国农业大学、瑞典卡罗林斯卡研究所、中国科学院杭州医学所、中国科学院生物物理研究所和复旦大学等的科研人员以及分子细胞科学卓越创新中心动物实验技术平台、细胞分析技术平台和分子生物学技术平台的支持。
  • 《分子植物卓越中心揭示多倍体杂草适应人类环境的快速进化机制》

    • 来源专题:转基因生物新品种培育
    • 编译者:姜丽华
    • 发布时间:2023-02-08
    • 杂草影响农业生产,因此探究杂草的起源以及如何适应农田环境对于杂草的科学治理必不可少。Grime提出的CSR生活史对策模型将植物分为竞争型(C)、耐受型(S)和杂草型(R)。为了适应农田、苗圃等低胁迫、高干扰的生活环境,抗干扰型杂草(Ruderal weeds)将能量主要分配给生殖生长,具有生命周期短、种子数量多等典型特征,但背后的遗传学基础目前尚不清楚。同时,“人类-作物-杂草”已成为探讨人类活动对生态系统和物种进化影响的重要系统。杂草快速进化、适应环境的机制的研究可以帮助科学家剖析新物种起源与进化的基本原理。   1月18日,《自然-通讯》(Nature Communications)在线发表了中国科学院分子植物科学卓越创新中心王佳伟研究组撰写的题为Common evolutionary trajectory of short life-cycle in Brassicaceae ruderal weeds的研究论文。该研究以十字花科多倍体杂草碎米荠(Cardamine occulta)为研究对象,运用基因组组装、群体进化分析、遗传学和分子生物学等手段,发现转录因子FLC(FLOWERING LOCUS C)的功能缺失以及蓝光受体CRY2(CRYPTOCHROME 2)的持续激活型突变是C.occulta生命周期缩短、适应高干扰环境的遗传学基础,并进一步在另一种杂草蔊菜(Rorippa palustris)中发现CRY2具有类似的突变,提出了以“FLC-CRY2”为核心、进化上保守的十字花科杂草进化路径。   该研究以非模式物种——十字花科的八倍体杂草C.occulta作为研究对象,对其基因组进行从头组装和注释,并对采集自起源地的87个C.occulta样本进行重测序与群体进化分析,发现其中一个进化分支分布最为广泛,能够适应人类活动的频繁干扰并随人类活动扩散。该分支在分化过程中经历了强烈的瓶颈效应,与近缘分支在开花调控途径上遗传分化显著,无法响应春化途径或光周期途径,在未经春化或者短日照条件下提前开花。研究通过遗传群体的BSA分析以及转基因植株的功能验证,定位并证实了FLC和CRY2是C.occulta无法响应春化途径和光周期途径的遗传学基础。其中,FLC发生了无义突变,翻译提前终止,形成了截短的无功能的蛋白;而CRY2发生了错义突变,形成了持续激活的CRY2蛋白。两者的相继突变使C.occulta开花提前进而生命周期缩短,形成了典型的杂草特征,得以在干扰前将种子散播出去,以此抵御干扰对繁殖后代的影响,适应人类活动频繁的环境。进一步,研究在另一种十字花科杂草R.palustris中发现CRY2也存在同样持续激活的类似突变,说明类似突变在杂草进化中具有保守性。该研究首次建立了抗高干扰型杂草模式物种,发现了FLC和CRY2突变是杂草相关性状演化的遗传学基础,提出了十字花科杂草的共同进化路径。   研究工作得到国家自然科学基金基础科学中心项目、创新研究群体项目以及中国科学院战略性先导科技专项的支持。