《粘液对纳米颗粒经上皮给药的作用》

  • 来源专题:重大新药创制—研发动态
  • 编译者: 杜慧
  • 发布时间:2017-11-15
  • 药物和药物输送系统的粘膜给药已经引起越来越多的兴趣。然而,旨在保护和递送药物至上皮表面的纳米颗粒需要通过表面衬里粘液转运。由于各种参数会影响包括腔内液,微生物群,粘液成分和清除速率以及下层上皮细胞状况在内的粘液的特定屏障特性,所以从实验到用于临床对于粘膜给药特别具有挑战性。此外,给药后,纳米颗粒与粘膜组分相互作用,形成生物分子电晕,调节其粘膜给药后的行为和命运。这些相互作用受纳米粒子性质的很大影响,因此已经提出了不同的设计和表面工程策略。总的来说,通过使用复杂和相关粘液屏障矩阵的互补技术评估这些生物分子 - 纳米颗粒的相互作用是至关重要的。

相关报告
  • 《纳米颗粒用于癌症的基因治疗》

    • 来源专题:重大新药创制—研发动态
    • 编译者:杜慧
    • 发布时间:2016-11-02
    • 作为癌症治疗的方法,相比于常规治疗,基因治疗好处颇多,包括效力高、特异性强,脱靶毒性低,并且可同时传递多个以肿瘤发生、 复发和耐药为靶点的基因。在过去的几十年里,基因治疗取得显著的进步,现在有望成为治疗癌症的一线疗法。在众多基因传递系统中,纳米颗粒因其具有毒性低,易控制,高基因传递效率和多功能性等优点而备受关注。本篇文章对基因疗法,基因传递技术和最新的研究进展进行了综述,并展望了纳米颗粒用于基因疗法的前景。
  • 《理化所等发现液态金属焊接纳米颗粒效应并获系列应用技术进展》

    • 来源专题:中国科学院亮点监测
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2018-10-13
    •         近期,中国科学院理化技术研究所与清华大学联合研究小组,首次报道了液态金属焊接纳米颗粒效应。在题为《基于液态金属模板电化学焊接效应实现薄层导电多孔纳米金属网》(Tang et al., Thin, Porous, and Conductive Networks of Metal Nanoparticles through Electrochemical Welding on a Liquid Metal Template, Advanced Materials Interfaces, 2018: 1800406)的论文中(封面文章),研究组首次发现,将包裹有金属纳米颗粒的液态金属小球置于碱性溶液中时,原本分散的颗粒会以自组织方式被连接成纳米多孔网状结构且易于剥离下来(图1)。究其原因,是在碱性溶液中,液态金属界面呈还原性,而铜纳米颗粒表面由于氧化会形成氧化物;二者在溶液中电化学势不同,体系于是发生电化学反应,由此造成纳米颗粒表面的氧化物被还原,进而导致新生成的金属铜将周围铜颗粒牢牢粘结到一起。这一过程如同经典的金属焊接一般,因此研究小组将其命名为“液态金属焊接纳米颗粒效应”。   颗粒网状物具有良好的机械强度,由此可将其从液态金属表面剥离开来并转移到其它基底上。通过测量这一类特殊的由金属颗粒组成的薄膜多孔材料的导电性,发现其与普通金属导电材料不同:体系中存在一种由电场导致的电阻降低特性;当电压过高时,测试电阻会突然增大数个量级,说明过高电压会导致颗粒网的导电性失效。深入研究揭示,造成电阻降低的原因在于外加电场下静电作用会使部分分开的颗粒网连接到一起增加了导电通路;而电阻骤升的原因则是大电流下电迁移作用增强,使得颗粒连接断开而失去导电能力。以上发现促成了利用液态金属编织微米厚度多孔导电颗粒网方法的建立,由此获得的新材料具有良好的机械强度和独特的电学性能。   此外,在联合小组发表的另一篇题为《铜离子激发的自生长液态金属蛇形运动》(Chen et al., Self-Growing and Serpentine Locomotion of Liquid Metal Induced by Copper Ions, ACS Applied Materials & Interfaces, DOI: 10.1021/acsami.8b07649)的论文中,研究组首次发现了一种崭新的自生长液态金属蛇形分散效应。在前期研究中,液态金属自驱动机器、表面Marangoni流动以及周期性自激振荡效应等现象相继被发现和解释。然而,因为液态金属巨大的表面张力,这些变形行为更多是作为一个整体呈现。此次发现的效应,则是一种不同于以往的大尺度液态金属离散变形与蛇形运动,革新了人们对液态金属空间构型转换方式的认识。   研究表明,在酸性铜盐溶液中,一团液态金属可以自发生长出大量细条状的伪足并像蛇一样运动(图2)。此现象背后的机理主要在于,因置换反应所形成的无数个微小的Cu-Ga原电池产生于液态金属和铜盐溶液界面处,这会改变液态金属的表面张力,从而产生不平衡的界面压差,最终导致了蛇形运动的发生。这里,溶液的酸性对实验结果影响巨大。在合适的酸性条件下,可通过调节酸性的强弱去控制蛇形液态金属的生成和运动速度。而且,此蛇形运动可被多次激发,大大增加了运动的持久性。研究进一步揭示,酸性铜盐溶液这一独特环境保证了无数的铜颗粒可以被持续稳定地析出和吞噬,此类动态平衡是蛇形分散运动现象得以发生的深层次原因。该现象丰富了液态金属物质世界的科学图景,进一步拓展了近年来兴起的液态金属柔性机器的理论与技术内涵。   除上述基础发现外,联合小组近期还在液态金属先进应用技术研究方面取得系列新进展,先后针对肿瘤治疗用生物医学新材料(图3,Wang et al., Advanced Healthcare Materials, 2018)、高性能电子墨水(图4,Chang et al., Advanced Materials Interfaces, 2018)、可穿戴医疗(图5,封面文章,Guo et al., Adv. Eng. Mater., 2018)、可拉伸皮肤电子(图6,Guo et al., Science China Technological Sciences, 2018)以及柔性机器人传感与控制(图7,Guo et al., Smart Materials and Structures, 2018)等新兴领域的紧迫现实需求发展出系列重要实用技术。   以上研究得到中国科学院院长基金与前沿科学项目及国家自然科学基金重点项目资助。