《Nature | 增强淋巴引流可减少创伤后脑水肿》

  • 来源专题:战略生物资源
  • 编译者: 李康音
  • 发布时间:2023-11-20
  • 本文内容转载自“ CNS推送BioMed”微信公众号。原文链接: https://mp.weixin.qq.com/s/h2bfRORefRZYwtO9svZ6fA

    2023年11月15日,罗彻斯特大学等机构的研究人员在 Nature 期刊发表了题为Potentiating glymphatic drainage minimizes post-traumatic cerebral oedema的研究论文。

    脑水肿与创伤性脑损伤(TBI)后的发病率和死亡率相关。脑外伤后去甲肾上腺素水平升高,去甲肾上腺素升高的幅度可以预测损伤的程度和死亡的可能性。类淋巴损伤既是脑损伤的一个特征,也是脑损伤的一个因素,但它与损伤相关的去甲肾上腺素激增的关系尚不清楚。

    该研究报告急性创伤后水肿的结果是抑制淋巴和淋巴液流动,发生在反应过度的全身释放去甲肾上腺素。这种脑外伤后肾上腺素能风暴与颈部淋巴管收缩性降低有关,与淋巴和淋巴液向体循环的回流减少一致。因此,在TBI小鼠模型中,泛肾上腺素能受体抑制使中心静脉压正常化,部分恢复淋巴和颈部淋巴流量,这些作用导致脑水肿显著减少,改善功能结果。此外,创伤后肾上腺素能信号的抑制促进了淋巴细胞从创伤损伤中输出细胞碎片,大大减少了继发性炎症和磷酸化tau的积累。这些观察结果表明,靶向中枢淋巴血流的去甲肾上腺素能控制可能为治疗急性TBI提供一种治疗方法。

相关报告
  • 《Nature | 鼻咽淋巴丛是脑脊液引流的枢纽》

    • 来源专题:战略生物资源
    • 编译者:李康音
    • 发布时间:2024-01-15
    • 2024年1月10日,韩国基础科学研究所等机构的研究人员在Nature上发表了题为Nasopharyngeal lymphatic plexus is a hub for cerebrospinal fluid drainage的文章。 长期以来,人们一直知道大脑周围蛛网膜下腔的脑脊液 (CSF) 会通过淋巴管流向颈部淋巴结,但这种联系和调节一直难以确定。 该研究在Prox1-GFP淋巴报告小鼠中使用荧光脑脊液示踪剂,发现鼻咽淋巴丛是脑脊液流向颈深部淋巴结的主要枢纽。该神经丛具有不寻常的瓣膜和短淋巴管,但没有平滑肌覆盖,而下游深部颈淋巴管具有典型的半月瓣、长淋巴管和平滑肌覆盖,将脑脊液输送到颈深部淋巴结。 平滑肌细胞中的α-肾上腺素能和一氧化氮信号通过深部颈淋巴管的运输特性调节脑脊液引流。在衰老过程中,鼻咽淋巴丛萎缩,但颈深部淋巴管没有类似的改变,脑脊液流出仍可能因肾上腺素能或一氧化氮信号而增加。对老年小鼠鼻咽丛淋巴内皮细胞中基因表达的单细胞分析显示,I型干扰素信号传导和其他炎性细胞因子增加。鼻咽淋巴丛作为脑脊液流出枢纽在衰老过程中的消退凸显了其重要性。然而,颈部深部淋巴向淋巴结转运的抗衰老药理学激活仍然可以增加脑脊液流出,这为在与年龄相关的神经系统疾病中增加脑脊液清除提供了一种方法,在这些疾病中,更多的外排是有益的。
  • 《美国国家标准与技术研究院(NIST)旨在通过减少扫描电子显微镜(SEM)的不确定度来增强其实用性》

    • 编译者:张宇
    • 发布时间:2025-05-30
    • 使用扫描电子显微镜(SEM)的电子束辅助成像技术来检测微型芯片上最微小的缺陷,长期以来一直是半导体行业健康发展的基石。但是,随着该行业不断将芯片组件小型化(对于计算机、植入式药物分配器、手机和其他新型设备的研发至关重要),对SEM图像中更详细信息的需求也在不断增加。 尽管扫描电子显微镜(SEM)精细的原子级分辨率几乎没有改进的余地,但美国国家标准与技术研究院(NIST)的研究人员在CHIPS测量计划的资助下,已开始一项多年研究,旨在减少基于SEM图像数据的测量结果中的不确定性。为此,NIST物理学家约翰·维亚鲁比亚(John Villarrubia)及其同事正在开展一系列实验,研究人员企图让SEM中的电子从不同的材料上散射。该研究团队希望通过将散射实验的结果与理论值进行比较,从而在SEM图像和所研究对象的特征之间建立更精确的联系。 扫描电子显微镜(SEM)通过用一束聚焦的电子束扫描样品表面来生成样品的原子级分辨率的图像。电子束与样品之间的相互作用会生成从样品中逸出的具有广泛能量范围的额外电子。其中能量最低的电子,称为次级电子,对于创建SEM图像至关重要,因为它们来自于样品表面或表面以下不远处,并且携带有关表面特征的大部分信息。能量更高的电子(能量超过50电子伏特的电子)对表面的敏感性较低,因为它们中的大多数由来自源光束的电子组成,这些电子因与材料深处的原子核碰撞而被反向散射。 确定究竟产生了多少次级电子,以及探测器实际记录了多少次级电子,是正确解读扫描电子显微镜(SEM)图像的关键。然而,精确计算这两个数字并非易事。 例如,从样品凹陷处产生的次级电子可能会被周围的材料重新吸收,而不是到达检测器。另一方面,从倾斜区域逸出的次级电子比水平区域更多。为了正确解读扫描电子显微镜(SEM)图像数据中表面特征的真实大小和形状,必须考虑这些影响。然而,物理学家们对电子散射过程,特别是在低能级下的散射,知之甚少,这就导致在对扫描电子显微镜(SEM)生成的图像数据进行解读时存在很大的不确定性。 “由于我们对电子散射的知识很欠缺,并且可能还存在一些错误认知,因此计量学家用来解读扫描电子显微镜(SEM)图像的数学模型也会存在这些问题,” Villarrubia说。 为了确保他们全面考虑了SEM图像中的所有次级电子因素,他与他的NIST合作者奥尔加·里德泽尔(Olga Ridzel)和格伦·霍兰德(Glenn Holland)设计了一个更简单但新颖的散射实验。在他们的研究中,将有一束电子撞击样品表面,产生次级和反向散射电子,就像扫描电子显微镜(SEM)的工作方式一样。 但是,该实验在两个重要方面与扫描电子显微镜(SEM)研究有所不同。首先,该样品表面被制造成完全平坦的状态,这使得分析散射电子的强度和能量变得更加容易。其次,样品将被放置在一个被称为延迟场分析仪(RFA)的装置中,该装置可以根据能量过滤反向散射电子和次级电子。通过调整滤波器,使得只有高于某一特定阈值能量的电子才能到达探测器,该操作可以高精度地测量次级电子的总数,以及特定能量范围内的次级电子数。 该团队计划使用在扫描电子显微镜(SEM)工作范围内的不同光束能量重复这些测量。研究人员还将对以不同角度倾斜的平坦表面的样品进行相同的测量,以评估改变斜率将如何影响收集到的电子数量。 然后,科学家们将把他们的测量结果与各种电子散射理论模型的预测结果进行比较。Villarrubia说,其中一种可能性是,现有的某个模型可能被证明是正确的。但他指出,更有可能的是,这种比较的结果“会证明即使是我们最好的物理模型依然是不准确”。最后,这些新数据将成为改进新的和现有的电子散射模型的基础数据集,以便该团队用这些新数据对电子散射实验的结果进行比较研究。 一旦研究人员确定了最佳模型,就可以将其应用于利用电子显微镜(SEM)的电子束扫描晶体管或其他具有不规则表面的芯片组件时发生的更复杂的散射过程的研究。 企业用户最终将可以确信他们所依赖的扫描电子显微镜(SEM)图像能够真正确定样品表面裂缝的实际大小、或者仅相当于十个氢原子大小的孔的宽度,乃至集成电路中逻辑门的形貌等等。