Scientific Reports期刊于12月23日发表了NEC欧洲研究所和NEC OncoImmunity AS公司的一篇文章“Artificial intelligence predicts the immunogenic landscape of SARS-CoV-2 leading to universal blueprints for vaccine designs”,文章描述了人工智能可以预测SARS-CoV-2的免疫原性,从而为疫苗设计提供通用蓝图。
文章称,该研究使用NEC Immune Profiler技术以及宿主感染细胞表面抗原呈递和免疫原性预测指标,绘制了人类人群中最常见的100个HLA-A、HLA-B和HLA-DR等位基因的SARS-CoV-2蛋白质组,并生成了全面的表位图。然后使用这些表位图作为输入,进行蒙特卡罗模拟,识别病毒中具有统计学意义的表位热点区域,这些区域在广泛的HLA类型中最有可能具有免疫原性。然后删除了与人类蛋白质组蛋白具有显著同源性的表位热点,以减少诱导脱靶自身免疫反应的机会。该研究还分析了病毒3400种不同序列的所有非同义突变的抗原呈递和免疫原性特征,以确定SARS-COV-2突变被宿主感染细胞呈递并被宿主免疫系统检测到的可能性降低的趋势。最后使用了大约22,000个人的HLA单倍型数据库,开发了“数字孪生”型模拟不同热点组合在不同人群中的有效性模型;该方法确定了一个最佳的表位热点群,可以在全球人口中提供最大的覆盖范围。通过结合以上技术对整个SARS-CoV-2蛋白质组进行了概况分析,并确定了抗原表位热点的子集,这些热点可用于疫苗制剂中,以覆盖全球人群。
来源:https://www.nature.com/articles/s41598-020-78758-5