《研究发现基础物种的稳定可促进其所在生态系统的稳定性》

  • 来源专题:中国科学院文献情报系统—海洋科技情报网
  • 编译者: liguiju
  • 发布时间:2020-03-01
  • 尽管许多研究认为生态系统基础物种的稳定性将促进整体稳定,但迄今为止,很少有研究对这种影响进行量化。

    加州大学圣巴巴拉分校海洋科学研究所(MSI)的研究人员利用南加州海带森林的长期生态数据来分析上述问题。研究发现,巨型海带的稳定性与海底大型藻类和海底无脊椎动物(如海绵)的稳定性,以及较高水平的生物多样性之间存在相关性。该研究结果已发表在《生态学》(Ecology)期刊上。

    基础物种塑造其整个环境并定义生态系统。MSI生物学家Robert Miller说:“生态系统通常以基础物种命名,如牡蛎海床、珊瑚礁或红木森林。它们通常提供生态系统的物理结构或主要食物来源,因此对其他物种有很大影响。”

    研究人员从圣巴巴拉海峡的9个浅礁中详细研究了18年的生态数据,包括物种规模和丰度、生物多样性和生物量,以及其他许多有用的数据,并通过统计和数学建模发现数据中的趋势和模式。文章主要作者、MSI博士后研究员Thomas Lamy说:“我们发现巨型海带的稳定性与海底大型藻类和海底无脊椎动物的稳定性之间存在积极联系。”强壮的海带增加了物种的多样性,这反过来又增加了生态系统的稳定性。

    科学家认为未来海带的稳定性可能会改变。气候变化将带来更多的变暖事件、更大的海浪和更强的风暴,这些都会影响巨型海带的生存。了解基础物种的稳定性和生态系统稳定性之间的关系将有助于人类预测生态系统的反应,然后做出相应调整。

    (刘雪雁 编译)

  • 原文来源:https://www.news.ucsb.edu/2020/019772/strong-foundation
相关报告
  • 《光合—异养微生物相互作用的营养循环促进海洋生态系统长期稳定》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:mall
    • 发布时间:2017-07-16
    • 沃里克大学的研究人员首次全面揭示了保持海洋稳定的基础微生物间的相互作用。文章题为“Nutrient recycling facilitates long-term stability of marine microbial phototroph-heterotroph interactions”,6月26日在线发表在《Nature Microbiology》上。 生物科学学院的Joseph Christie-Oleza博士和David Scanlan教授发现,海洋中最丰富的两种微生物—光合细菌和异养细菌,在营养循环方面通力合作,从大气中获取碳,转化为能量供给海洋生态系统。而此前的主流科学观点认为,海洋光合生物和异养生物是竞争关系,对海水中的稀缺营养物质展开争夺。 光合细菌利用光能将“二氧化碳”从空气中“固定”,将其转化为有机物质,并被异养细菌消耗,这一过程又将无机碳释放回生态系统,使光养细菌能够继续工作:进行光合作用并固定更多的碳。 这种相互作用能使海洋的营养水平相对恒定,是保持海洋健康的基础,也是维持整个海洋食物网的基础。海洋生态系统的有效运转可产生地球上一半的初级生产力和一半的氧气。这些营养物循环的速度决定着海洋缓冲大气中二氧化碳这一主要温室气体的速度。 研究人员在实验室中分别培养每种细菌的纯培养物,然后将它们在天然海水中混合,并进行了长时间的营养和分子生物学分析,观察它们的相互作用。 令人吃惊的是,两种微生物都达到了稳定状态,彼时光合细菌和异养细菌被认为形成了互惠互利的关系:光合细菌消耗无机营养物质进行光合作用固碳,而形成的有机碳可作为异养细菌的碳源和能量来源,重新将碳变为无机营养物的形式供光合细菌使用。 生命科学学院海洋微生物学教授Scanlan评论说:“更加深入地了解这些驱动海洋“发动机”运行的基本过程,将有助于提高对海洋的保护程度,并能更好地预测未来海洋将如何应对气候变化以及大气二氧化碳含量的增加。” Christie-Oleza博士评论说:“本研究就生态学中的一个基本概念给出了实验证据:营养需要流通,以保持生态系统的稳定,如同经济系统中的金钱。如果一个合作伙伴花费太多而不回报,他本人将会承受长期的后果。这个系统会进行自我调节,并始终保持稳定的状态。” (郭琳 编译) 原文链接:https://www.nature.com/articles/nmicrobiol2017100
  • 《中国科学院海洋研究所发现可燃冰是深海冷泉生态系统稳定的电容器》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:liguiju
    • 发布时间:2024-01-31
    • 近日,国际地学自然指数(Nature Index)期刊Earth and Planetary Science Letters在线刊发了中国科学院海洋研究所张鑫研究团队在冷泉生态系统研究领域取得的重要进展。研究人员利用自主研制的深海原位实验室,通过长期的深海原位实验揭示冷泉沉积物中浅表层天然气水合物(可燃冰)是冷泉化能合成生态系统繁荣稳定的缓冲器(电容器),展示出深海原位实验室在冷泉化能生态系统研究中的巨大潜力。 地球上大多数生态系统依赖光合作用,然而深海的黑暗、高压、低氧环境长期以来被认为不适宜生物生存。近年来,深海探测技术的进步揭示了以化能合成为基础的深海冷泉生态系统,重新定义了生命的边界。在冷泉区,甲烷是冷泉生物群落的主要能量来源。我们在南海冷泉区进行了多次原位实验,发现冷泉喷发虽为偶发事件,但冷泉生态系统在较长时间内保持相对稳定,与其他海域的研究结果相符。这引发了冷泉喷发间歇性与冷泉生态系统相对稳定性之间的悖论。 为解释这一悖论,张鑫团队采用了自主研制的深海原位实验室平台,在南海冷泉系统的天然实验环境中进行了原位实验。原位拉曼光谱数据显示,在冷泉喷发活动中,大量甲烷水合物迅速形成。喷发活动减弱或停止后,甲烷水合物分解释放出甲烷。深海高清视频显示,尽管冷泉喷发间断,但冷泉生物群落总体规模未见明显变化,冷泉底层水体的物理化学参数整体稳定。 海底气体流动是瞬时事件,气体在运输管道或浅层沉积物中形成水合物,甚至可能暴露在海底。我们提出了“天然气水合物电容器”概念,强调其在生物地球化学过程中的主导作用。这一动态“电容器”能够缓冲海底瞬时涌入的甲烷,并确保其更稳定地向甲烷贫化的底层水体扩散。这有助于维持生物群落接收的甲烷和硫化物通量的稳定性,从而维持繁荣稳定的冷泉生物群落。研究表明,在评估全球冷泉区生物群落与冷泉环境相互作用时,必须考虑“电容器”的关键作用,并凸显了大型动态“电容器”构成了潜在的大规模天然海底碳汇,对全球碳循环和气候变化具有潜在的影响。 论文第一作者为中国科学院海洋研究所博士研究生张雄,通讯作者为张鑫研究员,海洋所正高级工程师栾振东、副研究员杜增丰等人为文章共同作者。研究得到了国家自然科学基金、中国科学院战略性先导科技专项等项目的联合资助,以及“科学”号科考船、“发现”号ROV运维团队支持。 相关成果论文题目及发表链接如下: Xiong Zhang, Zhendong Luan, Zengfeng Du, Shichuan Xi, Lianfu Li, Chao Lian, Jianxing Zhang, Ziyu Yin, Liang Ma, Xin Zhang*. Gas hydrates in shallow sediments as capacitors for cold seep ecosystems: Insights from in-situ experiments. Earth and Planetary Science Letters, 2023, 624, 118469. https://doi.org:10.1016/j.epsl.2023.118469 Zengfeng Du, Xiong Zhang, Chao Lian, Zhendong Luan*, Shichuan Xi, Lianfu Li, Liang Ma, Jianxing Zhang, Wenzao Zhou, Xiufeng Chen, Zhijun Lu, Chuanbo Wang, Yu Chen, Jun Yan, Xin Zhang*. The development and applications of a controllable lander for in-situ, long-term observation of deep sea chemosynthetic communities[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2023, 193: 103960. https://doi.org/10.1016/j.dsr.2022.103960