《韩国研究人员开发新方法提升钠离子电池寿命与性能》

  • 来源专题:能源情报网监测服务平台
  • 编译者: 郭楷模
  • 发布时间:2025-06-20
  • 近日,韩国研究人员开发出一种通过在电池电解质中引入锂盐来提高钠离子电池(SIB)寿命和性能的方法。


    研究表明,在电解液中添加六氟磷酸锂(LiPF?)后,电池在400次充放电循环后仍能保持92.7%的容量,较之前报道的同类电池通常80%的容量保持率有所提升。

    韩国电子技术研究所(KETI)和江原国立大学的研究团队在新闻稿中表示,在电解质中添加LiPF?可显著改善硬碳阳极上坚固固体电解质界面相(SEI)层的形成,且添加LiPF?的电解质的可扩展合成凸显了其在实际SIB应用中的潜力。

    钠离子电池正被探索作为锂离子技术的替代方案,其优势在于全球储量丰富且成本低于锂,可能适用于大规模储能,而大规模储能是支持可再生能源发展所必需的。然而,SIB的商业化发展面临着与电池组件随时间衰减相关的挑战。

    由Ji - Sang Yu教授和Hyun - seung Kim教授领导的研究团队发现,锂盐添加剂通过双重作用过程改变电池的内部化学性质。

    在负极保护方面,锂盐的存在有利于在硬碳负极上形成更稳定的SEI层,该保护层比标准的钠基SEI溶解性更低,从而减少电解质的分解。在增强阴极方面,锂离子掺杂在O3型阴极的表面,形成了研究人员所称的“锂离子柱”。新闻稿称,O3型阴极表面轻微掺杂锂离子形成了一种结构增强体,起到支柱作用,防止层状结构坍塌,并减少循环过程中的气体产生。坚固SEI层的形成和O3型阴极表面的稳定显著提高了循环性和容量保持率。

    使用差示电化学质谱法进行分析表明,二氧化碳气体释放量减少,这是电解质降解的指标。利用显微镜技术进行的循环后检查显示,阴极结构得到保留,阳极上的SEI稳定。

    研究人员表示,这种电解质的可扩展合成为钠离子电池的实际应用指明了方向。这项研究有助于持续开发具有成本效益的钠离子电池技术,以实现更可持续的能源未来。新闻稿总结道,这项研究获得的见解可以指导开发更高效、更具成本效益的钠离子电池技术。


  • 原文来源:https://www.wedoany.com/innovation/18649.html
相关报告
  • 《澳大利亚研究人员开发出提升水系锌电池使用寿命的技术》

    • 来源专题:先进材料
    • 编译者:李丹
    • 发布时间:2024-03-11
    • 转自全球技术地图 据ChemAnalyst网1月9日消息,澳大利亚新南威尔士大学(UNSW)的研究人员开发出提升水系可充电锌电池(AZB)使用寿命的技术,该技术可以有效解决阳极化学腐蚀问题,将电池寿命提高5-20倍。水系锌电池使用大容量锌金属阳极,并用盐水溶液电解质替代易燃有机电解质,具有容量大、安全性高的优势,可作为锂离子电池的替代品,但组件之间固有的不兼容性会导致阳极发生化学腐蚀,从而缩短电池的整体循环寿命。研究人员在电解液中加入浓度为1%的1,2-丁二醇,有效减轻了阳极腐蚀并减少了引发电池短路的树枝状锌沉积物,使电池循环寿命接近现有锂离子电池的性能水平。水系锌电池适用于从小型住宅及商业设施到中型社区存储单元及大型电网级设施的各种应用场景。
  • 《釜山大学开发高效钠离子电池负极》

    • 来源专题:能源情报网信息监测服务平台
    • 编译者:guokm
    • 发布时间:2023-01-09
    • 锂离子电池具有高能量密度和长循环寿命,广泛应用于便携式电子产品和电动汽车。然而,锂的成本高、储量有限,因此需要开发替代储能系统,比如钠离子电池(SIB)。 (图片来源:釜山大学) 钠具有与锂相似的物理化学性质,而且能提供可持续性和成本效益。然而,钠的离子较大,扩散动力学缓慢,难以适应商用碳负极中的碳微结构,因此SIB负极存在结构不稳定和存储性能差的问题。使用掺杂杂原子的碳质材料,有望解决这些问题,但其制备过程复杂、昂贵和耗时。 据外媒报道,最近,由韩国釜山国立大学(Pusan National University)的Seung Geol Lee教授负责的团队,使用喹吖啶酮(quinacridones)作为前体来制备碳质SIB负极。诸如喹吖啶酮的有机染料拥有不同的结构和功能团,从而产生不同的热分解行为和微结构。当用作储能材料的前体时,热解的喹吖啶酮可以极大地改变二次电池的性能。因此,可以通过控制有机染料前体的结构来打造高效电池。 在这项研究中,研究人员重点关注2,9-二甲基喹吖啶酮(2,9-DMQA)。这种材料拥有平行分子填充结构,在600°C下热解时,可从淡红色变成黑色,残炭率高达61%。研究人员接下来进行了全面的实验分析,以描述潜在的热解机制。 研究人员提出,甲基取代基在450°C时会分解产生自由基,从而形成多环芳烃。多环芳烃具有纵向生长微结构,这是由平行堆积方向上的键桥而产生的。此外,2,9-DMQA中的含氮和含氧官能团会释放气体,从而在微观结构中形成无序区域。相反,热解未取代喹吖啶酮形成高度聚集的结构。由此可以看出,形态发展受到前体晶体取向的极大影响。 此外,在600°C下热解的2,9-DMQA,作为SIB负极表现出高倍率性能(在0.05 A/g时为290 mAh/g)和卓越的循环稳定性(在5 A/g时为134 mAh/g,持续1000个循环)。由于表面限制和层间距离增加,含氮和含氧基团可进一步提高电池存储。 Lee教授表示:“诸如喹吖啶酮的有机染料,可用作钠离子电池的负极材料,提供高效率,用于量产大规模储能系统。”