《韩国研究人员开发新方法提升钠离子电池寿命与性能》

  • 来源专题:能源情报网监测服务平台
  • 编译者: 郭楷模
  • 发布时间:2025-06-20
  • 近日,韩国研究人员开发出一种通过在电池电解质中引入锂盐来提高钠离子电池(SIB)寿命和性能的方法。


    研究表明,在电解液中添加六氟磷酸锂(LiPF?)后,电池在400次充放电循环后仍能保持92.7%的容量,较之前报道的同类电池通常80%的容量保持率有所提升。

    韩国电子技术研究所(KETI)和江原国立大学的研究团队在新闻稿中表示,在电解质中添加LiPF?可显著改善硬碳阳极上坚固固体电解质界面相(SEI)层的形成,且添加LiPF?的电解质的可扩展合成凸显了其在实际SIB应用中的潜力。

    钠离子电池正被探索作为锂离子技术的替代方案,其优势在于全球储量丰富且成本低于锂,可能适用于大规模储能,而大规模储能是支持可再生能源发展所必需的。然而,SIB的商业化发展面临着与电池组件随时间衰减相关的挑战。

    由Ji - Sang Yu教授和Hyun - seung Kim教授领导的研究团队发现,锂盐添加剂通过双重作用过程改变电池的内部化学性质。

    在负极保护方面,锂盐的存在有利于在硬碳负极上形成更稳定的SEI层,该保护层比标准的钠基SEI溶解性更低,从而减少电解质的分解。在增强阴极方面,锂离子掺杂在O3型阴极的表面,形成了研究人员所称的“锂离子柱”。新闻稿称,O3型阴极表面轻微掺杂锂离子形成了一种结构增强体,起到支柱作用,防止层状结构坍塌,并减少循环过程中的气体产生。坚固SEI层的形成和O3型阴极表面的稳定显著提高了循环性和容量保持率。

    使用差示电化学质谱法进行分析表明,二氧化碳气体释放量减少,这是电解质降解的指标。利用显微镜技术进行的循环后检查显示,阴极结构得到保留,阳极上的SEI稳定。

    研究人员表示,这种电解质的可扩展合成为钠离子电池的实际应用指明了方向。这项研究有助于持续开发具有成本效益的钠离子电池技术,以实现更可持续的能源未来。新闻稿总结道,这项研究获得的见解可以指导开发更高效、更具成本效益的钠离子电池技术。


  • 原文来源:https://www.wedoany.com/innovation/18649.html
相关报告
  • 《澳大利亚研究人员开发出提升水系锌电池使用寿命的技术》

    • 来源专题:先进材料
    • 编译者:李丹
    • 发布时间:2024-03-11
    • 转自全球技术地图 据ChemAnalyst网1月9日消息,澳大利亚新南威尔士大学(UNSW)的研究人员开发出提升水系可充电锌电池(AZB)使用寿命的技术,该技术可以有效解决阳极化学腐蚀问题,将电池寿命提高5-20倍。水系锌电池使用大容量锌金属阳极,并用盐水溶液电解质替代易燃有机电解质,具有容量大、安全性高的优势,可作为锂离子电池的替代品,但组件之间固有的不兼容性会导致阳极发生化学腐蚀,从而缩短电池的整体循环寿命。研究人员在电解液中加入浓度为1%的1,2-丁二醇,有效减轻了阳极腐蚀并减少了引发电池短路的树枝状锌沉积物,使电池循环寿命接近现有锂离子电池的性能水平。水系锌电池适用于从小型住宅及商业设施到中型社区存储单元及大型电网级设施的各种应用场景。
  • 《实时测量方法延长电池寿命并提高电池安全性》

    • 来源专题:能源情报网监测服务平台
    • 编译者:郭楷模
    • 发布时间:2025-08-04
    • 强大且安全的电池是电动汽车成功的关键要素。因此,测量电池的容量和状态至关重要。阻抗谱法是获取更多信息的测量方法。阻抗本身无法直接测量,而是通过电流和电压之间的关系计算得出。阻抗提供有关电池荷电状态 (SoC) 的信息,并有助于推断其健康状况(SoH,即电池内部状况,包括正极、负极和电解质的位置)或其安全状态。 收集所有必要数据需要耗时的测量和分析方法。此外,迄今为止,阻抗测量只能在静止状态下进行。通常需要长达 20 分钟才能获得表征电池所需的数据。 在 Fabio La Mantia 的领导下,弗劳恩霍夫 IFAM 的研究人员进一步开发了这种方法。现在,动态阻抗谱技术首次能够计算电池在运行过程中的状态测量值,并实时提供数据。 通过这种方式获取的信息远不止简单的充电容量或剩余工作时间数据。它能够提供电池内部状态的详细、准确和深入描述。这也能让我们预测单个电池的潜在寿命。 虽然现有的电池充电状态显示器(例如,集成在电动汽车的车载电子设备中)也会在使用过程中持续进行测量,但它们提供的信息较少,响应速度较慢,而且不太准确。 “首先,动态阻抗谱技术为优化电池管理开辟了新的可能性,从而延长电池的使用寿命。它也为这些电池在安全关键型应用领域的应用铺平了道路。”该项目负责人Hermann Pleteit解释道。 高分辨率测量方法和直接分析 在这种创新方法中,放电或充电电流与多频测试信号叠加。不同的频率使得能够推断电池内部某些组件或过程的状态。电流和电压的响应信号每秒测量高达一百万次。所有来自高分辨率测量方法的数据都会流入同时运行的数据处理系统。软件程序利用这些信息计算阻抗值的演变,然后推断相关电池单元的状态。 为了在高分辨率测量产生海量数据的情况下实时获得结果,弗劳恩霍夫的研究人员设计了另一个巧妙的技巧。“我们开发了算法,可以在分析之前显著减少数据量,同时又不丢失相关信息,”Pleteit 说道。与这些进展相一致,通过阻抗谱法实时控制电池状态的各个方面具有显著的优势。 快速关闭过热的电池 例如,电池管理系统可以利用阻抗数据,在行驶过程中立即记录某个电池单元局部过热的情况。然后,系统会直接关闭该电池单元或降低功率。这消除了对传统温度传感器的需求,因为这些传感器通常放置在电池单元外部,因此会延迟记录热问题。到那时,通常为时已晚,无法防止电池单元受损。 电动汽车充电器也有一些优势。例如,这项技术可以用来决定是选择超快速充电还是较慢但能减少电池磨损的充电方式。在休息站的短暂停留期间,电池管理系统会快速为电池充电,同时确保不会出现危险的温度峰值,并且内部组件不会承受过度压力。如果车辆插入充电器几个小时,管理系统会以较慢的速度为电池充电,以减少磨损并延长电池使用寿命。 可再生能源和航空应用 风能或光伏等可再生能源的供应商需要通过储能来补偿电力生产的波动,而借助弗劳恩霍夫技术,他们可以获得稳定的电池模块系统,并可随时进行控制。 实时监控电池状态甚至有望在未来安全关键场景中实现应用。“例如,这类系统可以用于环保型电动飞机。这个市场目前尚处于起步阶段。航运业也对这项技术表现出了浓厚的兴趣,”Pleteit 说道。 阻抗谱法不仅适用于目前常见的锂离子电池,还可以应用于固态电池、钠离子电池、锂硫电池,或任何其他未来技术。