《苹果最新金属塑料工艺专利曝光 令产品更防水、耐用!》

  • 来源专题:光电情报网信息监测服务平台
  • 编译者: husisi
  • 发布时间:2020-06-30
  • 苹果最新塑料金属粘合工艺用增强粘合材料填充金属的气孔,将塑料部件更为牢固地粘合在金属表面;

    · 塑料,粘合剂和金属基材组成的多层结构在彼此相连的连续表面间形成牢固且结构紧密的粘合,形成水密封结构;

    · 苹果增强版的金属塑料粘合工艺能够令未来产品更防水、坚固、耐用。

    日前,美国专利商标局(U.S. Patent and Trademark Office)正式公布了授予苹果公司的一项最新专利。该专利是一个塑料金属粘合工艺,具体而言,是使用一种增强粘合材料填充金属的气孔,将塑料部件更为牢固地粘合在金属表面。与仅仅使用金属相比,使用塑料金属结合部件能够使得产品更加耐用并且防水性能更好。

    苹果最新塑料金属粘合工艺专利曝光

    热塑性表面令产品更防水、耐用、美观

    在某些便携式电子设备中,热塑性塑料部件可以直接模制于金属表面,为设备提供更好的防水功能,以及令产品表面更美观。

    由于防水热塑性表面可防电子部件生锈,同时耐腐蚀,因此,使用热塑性表面能够比某些容易生锈、腐蚀的金属表面更为适合。

    苹果塑料金属粘合工艺的流程为:先令金属表面形成大量气孔,再往金属表面涂覆粘合剂,令粘合剂部分固化,再往金属表面模塑一层塑料层,然后使热塑性塑料和粘合剂固化,最后将材料融入设备壳体。

    另外,要保护金属表面和电子部件,在热塑性材料层和设备的金属外壳之间也需要用到水密性密封装置。

    在上方专利图FIG.3中,由塑料(130),粘合剂(310)和金属基材(120)组成的多层结构在彼此相连的连续表面之间形成足够牢固且结构紧密的粘合,从而以形成水密封结构。

    对于电子设备壳体结构而言,水密封结构是很有用的,因为它能够防止壳体内部的部件受潮等。

    除了提供防水或其他防液渗透功能之外,材料之间的超强粘合力还可以在一定程度上为电子设备提供抗冲击性,因此,苹果增强版的金属塑料粘合工艺能够令产品更坚固、耐用。

    尽管该专利显示他们的金属塑料混合制造工艺能够应用于苹果手机和MacBook电脑,由于在手机无线充电方面,目前苹果主要使用玻璃材料。因此,如果苹果选择使用这种工艺的话,最有可能受益的就是MacBook电脑。

相关报告
  • 《科学大家| 纸能包住火?新型特种耐火纸既防水又防火》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-07-06
    • 传统植物纤维纸简介   纸是中国古代四大发明之一,当纸代替了竹简成为使用广泛的文字载体后,各种知识、文化和科技等信息得到迅速广泛地传播,极大地推动了人类文明的快速发展。如今,纸已成为人类日常工作和生活离不开的多用途产品。在20世纪下半叶全球纸的用量大约增长了6倍,全球约20%的木材用于造纸。我国是纸与纸板生产和消费大国,造纸工业引起的环境污染问题倍受人们的关注。   据记载,东汉时期(公元105年),蔡伦在总结前人经验的基础上改进了造纸术,他使用树皮等来源广泛的原料,造出了质量更高、更适合书写的纸(蔡侯纸),为以后纸的推广使用做出了重要贡献。纸的发明为中国和世界带来了书写材料的革命,为人类的文明进步开创了辉煌的篇章。2007年,美国《时代》周刊公布的有史以来最佳发明家,蔡伦榜上有名。在美国麦克尔•哈特(Michael H. Hart)博士所著的《历史上最有影响的100名人排行榜》(The 100: A Ranking of the Most Influential Persons in History)中,蔡伦入选并排名第7,哈特博士评价说:“纸的发明,使中国文化得到迅速发展”。 蔡伦蔡伦   传统造纸过程很复杂,要经过很多道工序,包括浸泡、蒸煮、舂捣、去胶、纤维切短、制浆、抄造成纸、干燥等。大约二千年后的今天,现代造纸工厂已经可以自动化快速完成造纸的全部过程。然而,无论现代造纸工艺如何提高优化,始终没有改变以树木等植物纤维作为造纸原料的本质。植物纤维主要成分是纤维素,是由葡萄糖组成的大分子多糖,纤维素通常与半纤维素、果胶和木质素结合在一起,这些有机物质都是易燃的,所以传统植物纤维纸怕火、易燃烧。此外,造纸需要消耗宝贵的树木等自然资源,造纸过程也会造成环境污染。   俗话说“纸包不住火”,传统植物纤维纸的一个致命弱点是易燃性。火就是纸的天敌,一旦遇到火灾,对于记载着人类文明智慧结晶的书籍和纸质文物来说,都是灭顶之灾。在人类漫长的历史长河中,大火曾无数次吞噬人类宝贵的纸质文物和书籍,顷刻间将其化为灰烬,这也是许多世纪以来众多纸质文物损毁消失的一个主要原因,这对人类来说无疑是无可估量的巨大损失,令人痛心惋惜。例如,2015年1月30日,莫斯科社会科学信息研究所图书馆发生重大火灾,大火持续了十几个小时,数以百万计的珍贵古籍等图书资料在大火中被烧毁。可以设想如果能够研发出耐火的纸就可以避免无数次类似悲剧的发生。   新型无机耐火纸研发历程   基于传统植物纤维纸所面临的突出问题,探索新型耐火纸就成为一个重要的研究课题。那么,是否有可能寻找新的材料制造出不怕火的纸呢?这当然是长期以来人们的一个梦想,也是一个巨大的挑战,或许是一个天方夜谭,毕竟数千年来也没有可以书写印刷的耐火纸被制造出来并实现大规模应用。要寻找合适的材料制造耐火纸,自然会想到采用无机非金属材料来替代制造传统纸的易燃有机植物纤维,因为很多无机非金属材料都可以耐高温、不燃烧;但是遗憾的是,这些材料一般又脆又硬,所以不能用来制造柔软的耐火纸。随着科技日新月异的快速发展,纳米科技与其它学科交叉的研究成果为许多难题的解决提供了希望的曙光。   从2002年开始,我带领的研究团队一直从事纳米材料的研究。有时看到新闻说图书馆发生火灾,大量宝贵的书籍和纸质文物被烧毁,造成巨大的损失,我就感到很痛心。偶尔也会想到如果能有一种可以耐火的纸就好了,这样就可以避免类似悲剧的发生。但这也只不过是随便想想而已,毕竟研究团队不是研究造纸的,似乎与耐火纸应该没有什么关系。   从2008年开始,我的团队开始研究纳米生物材料,其中一个典型生物材料就是羟基磷灰石 (Ca10(PO4)6(OH)2) (又称碱式磷酸钙或羟基磷酸钙),最初几年主要研究羟基磷灰石纳米材料在生物医学领域中的应用,例如研究它作为药物缓释的载体以及作为骨缺损修复材料。在众多的无机非金属材料中,羟基磷灰石材料具有独特之处。羟基磷灰石是一种天然矿物质,它是一种典型的生物材料,与我们的身体有着千丝万缕的联系,它是人体骨骼和牙齿的主要无机成份,人的骨骼中羟基磷灰石的含量约为70 %,而牙釉质中羟基磷灰石的含量高达90 %以上。羟基磷灰石具有优良的生物相容性,并且环境友好。羟基磷灰石本身呈现优质的白色,熔点高(~1650℃),耐高温,不燃烧。羟基磷灰石材料对牙齿具有良好的再矿化、脱敏及美白作用,可阻止钙离子流失,预防龋齿病。含有羟基磷灰石的牙膏对唾液蛋白、葡聚糖具有良好的吸附作用,可减少口腔内的牙菌斑,促进牙龈炎愈合,对龋病、牙周病有良好防治作用。羟基磷灰石材料还是优良的骨缺损修复材料,植入人体后可释放出钙离子和磷酸根离子被身体组织吸收,有助于新骨生长。羟基磷灰石材料还具有其它多种用途,在药物缓释、生物成像、蛋白质分离、生物涂层、组织工程等生物医学领域具有良好的应用前景。此外,羟基磷灰石材料也可用于催化、污水净化、传感器等多个领域。   羟基磷灰石材料虽然耐高温、耐火,但是遗憾的是通常羟基磷灰石材料就像牙齿和骨骼一样又硬又脆,并不适合用来制造柔软的耐火纸。2013年,博士研究生路丙强在研究团队以往研究工作的基础上,通过反复实验,一次偶然的机会成功地合成出羟基磷灰石纳米线。他想通过过滤的方法从悬浮液中分离出这个材料。但是,没有想到这个材料与其它材料不同,过滤后它在滤纸上形成了类似膜一样的东西,但它的强度很低,稍微碰一下它就破了。在当时,路丙强还感到很失望,因为没有得到他想要的纳米粉体材料。   在团队讨论会上,大家对羟基磷灰石纳米线能有什么用途发表自己的想法。有人提出可以用羟基磷灰石纳米线做骨缺损修复材料,因为羟基磷灰石是典型的生物材料,自然而然应该考虑它在生物医学领域的应用;而路丙强提出用它做薄膜,并研究它在生物医学领域的应用。但我不太赞成这个想法,我说应该有更大胆、更创新的想法。当时,我突然闪现出一个灵感,我想到将羟基磷灰石纳米线用作原料来研制新型无机耐火纸。这在当时,有些团队成员觉得我的这个想法“不靠谱”,毕竟研究团队不是研究造纸的,也不会造纸,而且羟基磷灰石是传统的生物材料,似乎也不应该将它与耐火纸联系起来。 所制备的羟基磷灰石超长纳米线的扫描电子显微图片(a, b)和透射电子显微图片(c),纳米线可自然弯曲,表明具有良好的柔韧性; (d) 羟基磷灰石超长纳米线浆料可以形成很长的纤维(约28 毫米),是制造新型无机耐火纸的理想原料所制备的羟基磷灰石超长纳米线的扫描电子显微图片(a, b)和透射电子显微图片(c),纳米线可自然弯曲,表明具有良好的柔韧性; (d) 羟基磷灰石超长纳米线浆料可以形成很长的纤维(约28 毫米),是制造新型无机耐火纸的理想原料 所制备的羟基磷灰石超长纳米线的水性浆料,呈现优质的白色,分散性好,是制造新型无机耐火纸的理想原料所制备的羟基磷灰石超长纳米线的水性浆料,呈现优质的白色,分散性好,是制造新型无机耐火纸的理想原料   通过大量的实验后发现,我的这个想法还是可行的。研究团队发展了油酸钙前驱体溶剂热法,成功地制备出羟基磷灰石超长纳米线,其直径为约为10纳米、长度可达100微米到几百微米。羟基磷灰石超长纳米线的直径比人的头发丝还要小大约一万倍,其尺寸是如此之小,人的眼睛根本看不见,需要用高倍扫描电子显微镜观察。在高倍扫描电子显微镜下,这些羟基磷灰石超长纳米线可以自然弯曲,看上去就像又长又软的挂面一样,具有良好的柔韧性,这就可以解决羟基磷灰石材料的高脆性难题。研究团队采用羟基磷灰石超长纳米线作为原料,成功地研制出新型无机耐火纸,使“纸能包住火”成为现实。   新型无机耐火纸具有良好的柔韧性、优异的耐高温、耐火和隔热性能,即使加热到红热仍然不燃烧,可以耐1000℃以上的高温;而普通纸加热几秒钟即燃烧化为灰烬。   该新型无机耐火纸外观上和普通纸相似,呈现优质的白色,具有良好的柔韧性,可以任意卷曲,环境友好,不像传统植物纤维纸那样需要漂白;最神奇的是,新型无机耐火纸还具有传统植物纤维纸不具备的耐高温和耐火性能,即使在1000℃高温下耐火纸仍然可以保持其完整性;该耐火纸可以书写以及采用打印机彩色打印。新型无机耐火纸具有多种用途,其应用可扩展到传统植物纤维纸无法应用的领域,在多个领域具有良好的应用前景。   能否既防水又防火   最初研制的新型无机耐火纸虽然不怕火,但是它还是怕水的,所以还需要解决耐火纸的防水难题。要解决耐火纸的防水难题,就需要使耐火纸具有超疏水性能。超疏水性能是指水在材料表面的稳定接触角大于150°并且滚动接触角小于10°。具有超疏水性能的材料具有抗污、防雾、自清洁等优点,在多个领域具有良好的应用前景。“出淤泥而不染,濯清涟而不妖”,宋代诗人周敦颐在《爱莲说》中用这样的诗句表达了对莲花品质的喜爱。莲花“出淤泥而不染”及荷叶的超疏水和自清洁功能,即荷叶效应,引起了人们的极大兴趣。荷叶的表面结构特征有两个,其一是特殊的微米纳米双重结构;其二是表面有一层生物蜡状物质。荷叶的表面具有很多微米级的蜡质凸起结构,在每个微米级凸起的表面又生长了许多纳米结构,形成很多微纳米尺寸的小空间,这些小空间里充满了空气,形成一个一个小气室。水滴在荷叶表面由于表面张力的作用会形成毫米级的球形水珠,不能够进入尺寸更小的小气室,只能在一个个小气室顶端滚来滚去,这些小气室对球形水珠起到物理支撑作用。荷叶表面还覆盖一层生物腊状物质,它是一种低表面能物质,具有疏水作用。荷叶表面的微纳米结构和低表面能生物腊物质相互协同作用,使球形水珠与荷叶表面产生了排斥性,导致荷叶表面具有超疏水性能。此外,球形水珠在荷叶表面可以自由滚动并能带走灰尘,即荷叶具有自清洁功能,使荷叶能够出淤泥而不染。   超疏水材料的构筑通常是模仿荷叶的表面结构。国内外学者利用各种方法在材料表面构建微纳米粗糙结构和降低表面能两个方面制备超疏水材料。然而,有些制备方法对仪器设备的要求比较高,成本高,且通常使用一些含氟化学试剂如全氟硅烷等对材料表面进行化学修饰以降低其表面能,从而获得超疏水特性。但是,含氟化合物通常比较昂贵,且具有一定的毒性,对人体和环境存在潜在的安全性隐患。   新型防水耐火纸问世   我的团队根据荷叶效应的原理,采用表面吸附油酸分子的羟基磷灰石超长纳米线作为原料,成功地研制出一种新型防水耐火纸。那么防水耐火纸的防水性能是如何实现的呢?在防水耐火纸的抄造过程中,表面吸附了油酸分子的羟基磷灰石超长纳米线之间通过相互重叠、交织、缠绕形成纳米级多孔网络结构,这种特殊的结构使耐火纸形成类似微纳米结构的表面,再加上羟基磷灰石超长纳米线表面吸附的油酸分子具有疏水作用,二者协同作用就使耐火纸具有了优良的超疏水性能和防水功能。新型防水耐火纸具有多种功能,例如高柔韧性、环境友好、优良稳定的超疏水性能、良好的自清洁功能、优异的隔热和耐火性能。所制备的防水耐火纸不仅对水具有优良的超疏水性能,对多种商业饮料如矿泉水、橙汁、红茶、牛奶和咖啡等也具有良好的超疏水性能。新型防水耐火纸既不怕水也不怕火,实现了“水火不侵”。 新型防水耐火纸呈现优良的防水性能,将其放入染色的水中,取出后防水耐火纸依然洁白如初,没有任何颜色和水的污染新型防水耐火纸呈现优良的防水性能,将其放入染色的水中,取出后防水耐火纸依然洁白如初,没有任何颜色和水的污染   虽然学术界对于超疏水材料的制备方法已经进行了深入的研究,但是要实现稳定、可抗机械损伤和外界严酷环境的超疏水性能仍然是一个挑战。超疏水表面遭受诸如刮擦、磨损等物理破坏或处于高温等严酷环境中往往不能很好地保持超疏水状态。针对这一难题,我的团队提出了层状结构防水耐火纸的概念,制备出具有层状结构的新型防水耐火纸,该防水耐火纸不仅表面层呈现超疏水状态,而且其内部也呈现超疏水状态,当表面层受到物理破坏后,内部暴露出来的新层仍然保持超疏水状态,从而可实现耐火纸超疏水性能的高稳定性,在耐火纸受到机械损伤(例如手指摩擦、胶带粘贴剥离、砂纸磨损、刀划割等)或在高温严酷环境中仍能保持良好的防水性能。 水滴(染成蓝色以便观察)在防水耐火纸表面形成球形水珠,在纸表面滚动而不会被纸吸收;防水耐火纸对多种商业饮料都呈现出优良稳定的超疏水性能水滴(染成蓝色以便观察)在防水耐火纸表面形成球形水珠,在纸表面滚动而不会被纸吸收;防水耐火纸对多种商业饮料都呈现出优良稳定的超疏水性能 新型防水耐火纸具有优异的自清洁功能,纸表面上的灰尘和污染物很容易被水冲掉从而实现表面自清洁新型防水耐火纸具有优异的自清洁功能,纸表面上的灰尘和污染物很容易被水冲掉从而实现表面自清洁 防水耐火纸具有自清洁功能,用于露天广告牌利用雨水可自动清洁灰尘防水耐火纸具有自清洁功能,用于露天广告牌利用雨水可自动清洁灰尘 新型防水耐火纸可应用于油和水的高效快速分离新型防水耐火纸可应用于油和水的高效快速分离   特种耐火纸及防水耐火纸的应用前景   作为特种耐火纸可应用于重要文件、档案、证书等的长久安全保存、耐火书法绘画纸、耐高温标签纸等;作为功能化耐火纸可应用于多个领域,例如防水耐火纸、抗菌耐火纸、发光耐火纸、导电耐火纸、磁性耐火纸、催化耐火纸、火灾自动报警耐火壁纸、多模式防伪耐火纸等;在阻燃、耐火、隔热领域,有望用于防火光(电)缆、防火服、防火壁纸、防火门等;在环境保护领域,可用于有机污染物可再生高效吸附、重金属离子吸附、水净化处理、污染空气PM2.5高效去除、防雾霾口罩、空气净化器等;在能源领域,可用于耐高温电池隔膜、保温、节能等;在电子信息领域,可用于各种柔性电子器件、耐高温电子器件等;在生物医学人体健康领域,可用于生物医用纸、骨缺损修复、创口贴、快速检测试纸等。   新型无机耐火纸的原料羟基磷灰石超长纳米线可采用普通的化工原料人工合成,不需要消耗树木等宝贵的自然资源;新型无机耐火纸的整个制造过程环境友好,不会对环境造成污染,具有良好的产业化应用前景。   新型防水耐火纸具有良好的自清洁功能,落在防水耐火纸上的水会形成球形水珠在纸的表面自由地滚动并带走灰尘等污物而实现自清洁。如果防水耐火纸用于露天广告牌等,利用雨水可自动保持清洁而免去人工清洗的麻烦。另外,防水耐火纸在呈现超疏水性能的同时,也呈现超亲油状态,可应用于油和水的快速高效分离。
  • 《智库观点 | 轻量化背景下车用改性塑料的发展与展望》

    • 来源专题:可再生能源
    • 编译者:武春亮
    • 发布时间:2024-08-14
    • “ 背景简述 汽车轻量化是指在不牺牲性能且成本可控范围内,通过优化材料选择、生产工艺和车身结构设计来减轻汽车零部件乃至整车重量的技术。这种技术不仅可以增强汽车的动力性能,还能显著降低燃油消耗和减少有害尾气的排放。 在三种汽车轻量化技术中,材料的轻量化可达到最大减重效果,选择强度高、密度低的材料来替代传统钢材,如高强度钢、铝合金、镁合金、钛合金、复合材料和增强塑料。高强度钢以高屈服强度和抗拉强度而著称,是目前应用最广泛的一种轻量化材料;合金具有显著的减重效果、提升性能、易回收等优点而备受青睐;复合材料中的碳纤维拥有显著的减重效果,但因成本高和回收利用困难限制了其更广泛的应用发展;增强塑料方面,改性塑料具备诸多优势,正成为推动汽车轻量化的关键材料。 01 改性塑料在汽车领域的应用与产业变革 改性塑料行业的发展依赖下游应用产业发展,改性塑料制品广泛应用于家电、汽车、通讯、电子电气、医疗、航天航空等多个领域。 在汽车工业中,塑料的应用始于20世纪50年代,专用改性塑料如聚丙烯(PP)、聚乙烯(PE)、聚氯乙烯(PVC)、聚苯乙烯(PS)和丙烯晴-丁二烯-苯乙烯共聚物(ABS)等,这些通用塑料因生产量大、成型性好、价格便宜而被广泛使用。聚对苯二甲酸丁二醇酯(PBT)、聚酰胺(PA)及聚碳酸酯(PC)等工程塑料具有较高的机械强度、耐热性、耐化学性等特点,经过改性后适用于汽车的多种部件。同时,特种工程塑料,比如聚醚醚酮(PEEK)、聚苯硫醚(PPS)和聚醚酰亚胺(PEI)等,也具有卓越的性能,在汽车领域的应用日益增多。 随着汽车产业对节能减排的日益关注和新能源汽车的迅猛发展,轻量化设计已逐渐成为行业的主导方向。在这一趋势下,塑料材料在汽车制造中的应用正在迅速增加,其使用范围已从最初的车内装饰件延伸至外饰件,再至结构性及功能性部件,应用领域持续扩大。 改性塑料在汽车轻量化中具有多方面的作用,是推动汽车行业发展的关键材料之一。主要体现在以下5个方面:(1)轻量化:使用塑料替代钢材,可显著减轻车身重量,对新能源汽车尤其有利,能减重约30%,纯电动车可减重约100kg。(2)成本效益:塑料易于成型,简化加工过程,减少模具和工艺调整时间,加快产品上市,降低成本,提高效率。(3)节能减排:增加塑料使用比例,减少燃油消耗,降低CO2和其他有害气体排放,提升燃油效率。(4)性能提升:改性塑料具有高强韧性、高刚性和抗冲击能力,提高汽车部件耐用性和可靠性,同时优化外观设计和空气动力学性能。(5)续航增加:塑料材料有助于减轻电池系统重量,对提升新能源汽车的续航里程至关重要,自重每降低10%,续航里程可提升2%-3%。 从汽车用改性塑料产业链来看,上游是各种未经改性和加工的通用塑料、工程塑料和特种工程塑料等原料;中游是在树脂原料基础上添加适当的改性剂,并通过填充、共混、增强等工艺,获得具有新结构特征的塑料制品;下游是各类汽车零部件,包括汽车内外饰、电器件和发动机室部件等。 02 中国汽车改性塑料市场:机遇与挑战并存 行业竞争格局 2023年,中国汽车改性塑料市场规模约800亿元,已成为全球规模最大的汽车改性塑料市场之一,并且持续增长。主要受两大因素驱动:一是改性塑料在汽车制造中因轻量化特性和应用的广泛性日益受到重视;二是随着我国新能源汽车行业的快速发展,对改性塑料的需求不断增加,这些材料在提高汽车的续航里程、性能和耐用性方面起到了关键作用。 尽管国内涉足改性塑料行业的企业众多,但普遍生产规模较小。改性塑料产品的核心竞争力在于配方,配方设计中原材料和改性助剂的微小调整都可能导致产品性能的显著变化。当前,中国车用改性塑料行业分为三个梯队:(1)大型外资企业,如陶氏、巴斯夫等,在高端市场占主导地位,拥有强大的资金和研发实力。(2)规模较大的内资企业,以金发科技为龙头,面向中低端市场,技术、品牌和市场等方面还需继续加强。(3)小型内资企业,在技术、资金、市场方面更是欠缺,想要发展将面临更大的挑战。 随着市场对高端改性塑料产品需求的增长,国内企业通过大量研发投入,不仅提升了产品竞争力,也推动了行业集中度提高。技术进步使国内企业在高端市场逐渐缩小与国际巨头如巴斯夫、SABIC的差距,促进了中高端改性塑料的本土化替代。尽管在外资汽车品牌中,国际巨头仍占据较大市场份额,但国产新能源汽车销量的快速增长,为国内厂商提供了机遇,国内改性塑料企业在高端市场的渗透率有望进一步提升。 车用改性塑料重点品种的市场情况 汽车用改性塑料产品中,改性PP是主要的细分市场,市场份额接近五成,其他重点品种还包括改性PA、ABS等。 1 车用改性PP 聚丙烯(PP)密度仅有0.89-0.91g/cm3,被认为是目前最轻的塑料之一,PP综合性能出色且具有一定价格优势,这使其成为汽车轻量化的理想选择。 改性PP是汽车轻量化的关键材料。长玻璃纤维增强PP因其优异的抗蠕变性能和低密度,能显著降低部件重量,适用于制造前端模块,可减重20%-50%;全塑料前端模块通过注射成型简化结构,可减重30%-40%。发泡改性PP进一步减轻了塑料制品10%-20%的重量,相比金属材料减重超过50%,适用于尾门、顶棚等部件。 2 车用改性PA 聚酰胺树脂(PA)作为一种卓越的工程塑料,具有出色的化学稳定性和对润滑油及汽油的优异抵抗性,凭借轻量化、耐热、耐油和阻燃等多重优势,被广泛应用于汽车的发动机系统、电气系统以及底盘系统等多个关键领域。 改性PA塑料在汽车轻量化领域展现出卓越的性能。例如,经过增强处理的PA材料用于制造汽车发动机的机油集滤器,可以有效减少空气的混入,降低成本50%,并减轻重量70%。 在传统内燃机汽车制造中,陶氏、巴斯夫等知名工程塑料企业已经研发出多种耐温级别的PA12材料。这些材料被广泛应用于汽车的关键油液和气体输送系统,包括油箱注油管、燃油输油管、曲轴箱通风管、发动机进气管以及真空制动管等部件。 3 车用改性ABS 丙烯腈-丁二烯-苯乙烯树脂(ABS)材料以其设计灵活性和成型便利性,不仅适合电镀、喷漆和焊接等后续加工处理,还广泛用于生产汽车的内外饰件及结构件。尽管大型国际化工企业凭借成熟的技术和稳定的产品供应,在车用改性ABS市场中占据显著地位,但国内企业正在逐步增加市场份额。特别是在新能源汽车市场的迅猛增长中,国内产品的替代趋势日益明显。 4 其他车用改性塑料 在汽车制造领域,除了常见的塑料类型外,其他改性塑料如聚碳酸酯(PC)、聚甲醛(POM)和聚对苯二甲酸丁二酯(PBT)等,也发挥着关键作用。PC以高透光率和耐热性被广泛应用于车灯和车窗制造,而POM则因其接近金属的硬度和强度,经过改性后常用作金属替代品,用于生产汽车轴承和齿轮。改性PBT则凭借耐化学腐蚀、耐气候、耐磨性等特性,被用于制造门锁系统、车镜、门把手等部件。 随着汽车行业对轻量化和电动化的需求增加,预计经过改性后各类功能性的塑料产品在汽车制造中的应用越来越普遍。 综 述 在汽车轻量化大背景下,通过材料优化实现汽车减重尤为重要,其中改性塑料因轻质、高强度等特性成为关键材料,在汽车制造中的应用正不断扩大,带动市场需求快速增长。随着国内外企业在技术创新和产业链整合方面的不断进步,预计改性塑料的需求量将持续增加,特别是在新能源汽车领域,中国新能源汽车的快速发展为本土改性塑料企业带来机遇,有望进一步扩大市场份额。