《纳米多孔薄膜的新产业的未来发展可能性》

  • 来源专题:纳米科技
  • 编译者: chenfang
  • 发布时间:2015-12-16
  • 文章介绍了金属有机骨架(MOFs),它是一种新的纳米孔材料类型。生物工程师从鲁汶,比利时,已经开发了一种替代方法,通过使用非常薄的膜的形成产生这些材料,使他们可以很容易地被用于芯片等高新技术的应用。孔隙的大小可以在纳米水平进行调整(一纳米是一米的十亿分之一)。一位芯片的内表面,通过这些孔隙的形成,不同的大小从1000到每克材料5000平方米进行辐射。MOFs可以看作是微观的海绵材质,可以吸收大量的材料。研究人员正在检查MOFs材料作为催化剂使用加速客体分子的化学反应,其可能的应用是储气库,便于容纳大量内表面的材料。

相关报告
  • 《探秘金属“铟”:在薄膜太阳能产业发展下供需平稳》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2019-01-11
    • 随着移动能源时代的全面到来,薄膜太阳能产业正迎来爆发式增长。薄膜太阳能芯片轻、薄、柔,可以像英特尔芯片一样嵌入各类载体,大到城市摩天大楼,小到邻里屋顶,或是街边的阳伞,路上奔跑的汽车、快递车、共享单车,又或是你走过的一段路,背过的一个背包,都可以融入薄膜太阳能技术,让传统产品纷纷变身为“发电体”,实现能源的共享和自由使用。 据了解,金属铟是制造薄膜太阳能电池的基础原材料之一。囿于铟资源稀缺、不易开采,这些先天不足的印象下,人们担忧其是否会出现供应短缺、价格不稳的情况。而业界经过分析普遍认为,随着开采技术、钻探技术、提纯技术和回收利用技术的提高,可以使用的铟资源会越来越多,探明储量也会逐渐增多。由此,即使未来一些年铜铟镓硒产量爆发式增长,其也很难影响铟的供求关系。 技术创新应用加速降本增效 未来,铜铟镓硒薄膜产业将进入更低成本的高速发展期,万亿级薄膜太阳能市场将全面开启。随着近些年来太阳能应用细分技术路线――铜铟镓硒(CIGS)的逐步兴起,预计未来四年,铜铟镓硒光伏组件价格有望压缩至2.2元/瓦,铟作为一份子,还将从中受益,在稳步发展中迎来更广阔的应用空间。 随着光伏产业的不断发展和平价上网的倒逼,降低发电成本是一个持续性的目标。在这一大背景下,通过技术路线来降低稀有元素铟的用量,是很多企业正在积极探索的降本方法。 目前,已经有企业研发出较为可靠的降低铜铟镓硒组件生产铟用量的方案:通过新型等离子喷涂靶材技术的开发、靶材喷涂中损耗及残靶上的铟回收、RC镀膜产生固废铟回收、芯片切割及Web边缘的铟回收等手段,可以大幅降低对铟的市场需求。此外,在铜铟镓硒电池中适当增加镓的成分、减薄电池膜层等方式,也可以有效减少铟的用量。 “随着铜铟镓硒研发技术水平的提升,生产良率提高以及回收技术的充分利用,1吉瓦的铜铟镓硒薄膜电池的铟净用量将降低到10吨以下,而未来中期目标则为5吨/吉瓦―6吨/吉瓦,薄膜电池对铟的需求量会进一步降低。”相关光伏技术人员向媒体记者透露说。 经测算,靶材喷涂中损耗及残靶上的铟回收率为98%,RC镀膜产生固废及无效Web上的铟回收率为95%,铜铟镓硒芯片转换效率以及生产良率的持续稳步提升,也能够降低约15%左右的铟用量需求。 与此同时,随着开采技术、钻探技术、提纯技术以及回收利用技术的提高,可以使用的铟资源和可探明的铟储量也会逐渐增多。由此可见,即使未来几年铜铟镓硒产业爆发式增长,综合当前行业现状和市场供需产能,铟的供给和价格根本不会有问题。 供需平衡价格波动可能性小 铟(Indium),原子序数49,于1863年由德国化学家赖希(H.Richter)在锌精矿中发现,属稀散金属。铟呈银白色并略带淡蓝色,质地非常软,能用指甲刻痕。在自然界中,铟矿物均以微量的形式分散伴生于其它矿物中。铟在地壳中的分布量比较小,是黄金的1/8,白银的1/50,迄今为止,未发现单一的或以铟为主要成分的天然铟矿床。 据统计,全球铟探明储量预估为5万吨,其中可开采的占50%。据了解,中国铟储量占世界总储量的73%以上,保有储量13000吨左右,分布于全国15个省区,是全球第一大铟储量国。中国还具备株冶集团(600961)、中金岭南(000060)、锌业股份(000751)等多家全球领先的铟生产商,能够为持续增长的需求量提供强有力的供给。 工业通过提纯废锌、废锡的方法生产金属铟,回收率约为60-70%。由此计算,在探明储量、可开采量不增长以及铟回收率不提升的基础上,目前可使用的铟大约有1.5万吨-1.8万吨。 为此,国家能源集团方面相关研发人员也表示:“倘若将这1.8万吨可使用的铟,全部生产铜铟镓硒电池,能生产1800吉瓦,即使只有十分之一的量用到生产铜铟镓硒也能生产180吉瓦,就目前的铜铟镓硒产能而言,铟资源还是十分丰富的。现阶段看,铟尚不构成对铜铟镓硒应用的影响。”究其原因,铜铟镓硒的应用规模不足以触动铟的供求关系。
  • 《国家纳米中心:自组装多孔薄膜用于高效有机小分子分离》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:万勇
    • 发布时间:2018-08-20
    • 近日,国家纳米科学中心和中国科学院纳米科学卓越中心唐智勇研究员和李连山副研究员在具有刚性分子骨架的自组装多孔薄膜用于高效有机小分子分离的研究中取得重要进展。相关研究成果“Microporous membranes comprising conjugated polymers with rigid backbones enable ultrafast organic-solvent nanofiltration”于2018年7月23日在线发表在《自然·化学》(Nature Chemistry)杂志 (Nat. Chem. 2018, DOI: 10.1038/s41557-018-0093-9)。   当今工业过程中涉及大量的分离、纯化或者浓缩过程,因此分离技术成为现代工业中最重要的技术之一。目前,分离纯化过程主要依赖于高能耗的基于热的过程,例如蒸馏、蒸发、精馏等。据统计,化工工业中用于分离和纯化的能源消耗占据了全部能源消耗的一半,其中80%被蒸馏过程消耗。因此,开发低能耗、高效的分离纯化技术将极大的降低能源消耗。   膜分离过程是一种在选择性膜两侧施加压力差,使得待分离物质选择性通过膜从而实现分离的过程,这一过程的核心技术是高效、高选择性膜材料。这一技术在水纯化或者海水脱盐方面已经有了很成熟的应用,利用聚酰胺等聚合物材料的薄膜实现杂质或离子去除。然而,其在有机体系的应用相对滞后,这是因为大部分传统的一维聚合物材料在有机溶液中不稳定。其次,传统一维聚合物薄膜没有永久性孔,导致分离速度非常低下。   为了同时解决高稳定性、高溶剂通量及高选择性的问题,唐智勇课题组选择了具有刚性骨架的自组装多孔聚合物材料。这种材料相比于传统的一维柔性聚合物材料有非常大的优势:第一,三维全共轭结构使得这类材料在任何溶剂中不溶,且具有很高的热稳定性;第二,刚性骨架支撑起丰富的自组装微孔,有利于溶剂的传输;最后,可通过化学手段对孔结构或尺寸进行调控。然而其三维刚性结构在解决了结构稳定性的同时,其不溶的特性也同时带来了材料成膜困难的问题。因此,如何获得高质量的薄膜是解决这类材料在膜分离领域应用的关键一步。受一维聚合物表面聚合的启发,该课题组在SiO2表面修饰初始聚合位点后进行表面聚合反应,通过精细控制表面修饰及聚合反应条件,获得了平方厘米级的无缺陷薄膜并成功转移至超滤膜多孔支撑层。分子截留测试表明,其对有机溶剂具有极高的稳定性,在同等选择性基础上,过滤速度较目前商用的一维柔性聚合物薄膜高出两个数量级。这一结果主要得益于这类材料永久性微孔结构及高孔隙率,使其有望成为新一代高效膜分离材料。   国家纳米科学中心梁斌博士和王会助理研究员为文章的共同第一作者;国家纳米科学中心和中国科学院纳米科学卓越中心唐智勇研究员、李连山副研究员为共同通讯作者。