《科学家发现控制农作物吸收砷的基因》

  • 来源专题:食物与营养
  • 编译者: 潘淑春
  • 发布时间:2008-06-26
  • 2008-06-23 农民日报讯:丹麦和瑞典科学家最近发现,一种帮助农作物抵御真菌感染的基因,同样有助于农作物吸收有毒的亚砷酸盐。这一成果有望应用于开发不吸收砷的转基因农作物,降低人们因饮食而导致慢性砷中毒的几率。
  • 原文来源:http://www.farmer.com.cn/wlb/nmrb/nb8/200806230083.htm
相关报告
  • 《JNeurosci:科学家发现控制攻击性的关键蛋白》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2018-06-13
    • 根据一项最新发表在《JNeurosci》上关于雄性小鼠的研究,攻击行为和表现具有攻击性的动机的分子机制并不相同。这项发现表明也许可以通过靶向大脑奖励区域中的一个蛋白来降低攻击的可能性。 尽管和药物上瘾有相同的特点,但是研究人员并不清楚攻击性背后的分子机制。其中一种共享的机制可能涉及一个转录因子——ΔFosB,该因子产生于伏隔核 (NAc)中,对许多不同的奖励经历产生响应,如性行为和锻炼。 Scott Russo、Elizabeth Heller及其同事发现NAc神经元中的ΔFosB越高,意味着攻击性小鼠攻击它们巢穴入侵者的行为越激烈。在攻击性小鼠体内过表达ΔFosB还会增加它们在狭窄空间遇到其他小鼠时的优势。尽管表达多巴胺D1受体的中型多棘神经元(D1-MSNs)中ΔFosB增加与小鼠攻击行为激烈程度增加有关,但是D2-MSNs中ΔFosB表达水平升高使得小鼠更不喜欢它们之前遇到过入侵者的通道。 这些结果表明ΔFosB在调节攻击行为及奖励质量的两种不同的NAc细胞中有着截然不同的作用。
  • 《科学家发现控制纳米晶体的电子性质的新方法》

    • 来源专题:可再生能源
    • 编译者:pengh
    • 发布时间:2017-08-14
    • 来自耶路撒冷希伯来大学、石溪大学和美国能源部的研究人员发现了一种重要的半导体调制方法的新效果。该方法通过在材料的结构中创建开放空间或“空位”,使科学家能够调整半导体纳米晶(SCNCs)的电子特性,这些半导体粒子的尺寸小于100纳米。这一发现将促进智能窗户等新技术的发展,这些技术可以根据需求改变不透明。 科学家们使用一种叫做“化学掺杂”的技术来控制半导体的电子特性。在这个过程中,化学杂质——来自不同材料的原子——被添加到半导体中,以改变其电导率。虽然SCNCs是可行的,但由于它们的尺寸很小,所以很困难。在化学掺杂过程中添加的杂质含量非常小,为了使纳米晶体正确地掺杂在晶体中,只有少量的原子可以被加入到晶体中。纳米晶体也倾向于排除杂质,进一步使兴奋剂的过程复杂化。 为了更容易地控制SCNCs的电子特性,研究人员研究了一种叫做空位形成的技术。在这种方法中,杂质没有加入到半导体中;相反,其结构中的空缺是由氧化还原反应(redox)反应形成的,反应是一种化学反应,电子在两种物质之间转移。在这种转移过程中,一种掺杂发生在缺失的电子上,称为孔洞,在晶体结构中自由移动,极大地改变了SCNC的导电性。 来自耶路撒冷希伯来大学的纳米技术学家乌里·巴因(Uri Banin)说:“我们还确定了空缺形成的兴奋剂反应的效率。”“在更大的SCNCs中,空缺的形成实际上更有效率。” 在这项研究中,研究人员调查了硫化铜纳米晶(半导体)和碘(一种化学物质)之间的氧化还原反应,以影响氧化还原反应的发生。                                                               ——文章发布于2017年8月10日