《突破 | 可实现超过100GHz主频,科学家开发集成光芯片时钟技术》

  • 来源专题:光电情报网信息监测服务平台
  • 编译者: 胡思思
  • 发布时间:2025-03-03
  • 最近,北京大学与中国科学院空天信息创新研究院团队合作,首次开发了一种利用芯片光频梳为光本振的新型光电时钟同步系统方案,合成了频率扩展至太赫兹的任意信号,并构建了微波光子多波段通感一体验证系统。

    该论文共同通讯作者、北京大学研究员常林表示:“我们的方法利用光时钟技术,可以直接产生超过 100GHz 的主频时钟信号,并实现整个系统的同步。这不仅极大地提升了系统便利性和功能扩展能力,还具备低噪声、高稳定性和低功耗的特点。”

    这种集成化方案不仅大幅降低了成本和功耗,还提升了系统的性能和灵活性,有望应用于 6G 通信、空天遥感、量子计算、AI 计算等领域。该研究不仅为光与电之间的统一时频参考开辟了新途径,还为通信和感知系统的未来发展提供了新的方向。

    此前,无线通信和传感通常需要使用不同的频率来实现各种功能。例如,手机的 4G、5G 甚至未来 6G 通信,以及不同平台上的不同频率的微波感知系统。

    传统方法中,为了产生并处理这些不同的频率,需要为每个频率使用专门的电子芯片及外围处理链路,频率间的相参性由统一系统时钟保证。

    然而,

    基于传统电芯片的时钟方案存在诸多挑战,例如从低频到高频需要经过多步信号处理,这不仅消耗大量功率,还会产生较高的热量。此外,它还存在噪声较大、成本高、体积大等缺点。

    在该研究中,研究人员通过光芯片技术极大地提高了系统的集成化程度。基于单一芯片,可以直接合成超大带宽内不同频率的时钟信号,用一颗芯片解决通信、感知、计算等不同系统的问题。

    通过共享硬件,实现了微波通信和感知系统的融合,能够在不同电磁频段上执行多种功能,如微波成像、目标检测和高速数据传输。这种方法不仅大大提高了集成化程度,还综合了多种功能,形成了一个更高效、更紧凑的系统。

    图丨光电系统的时频策略

    常林指出,该系统的通信调制格式可以达到很高的复杂度,不仅能够支持现有 4G、5G 通信,还可以支持未来更复杂的 6G 通信编码。而且,只需要一颗输出功率不到 20 毫瓦的激光器芯片,就能产生 100GHz 的信号,这在过去是很难实现的。

    历时三年的研究中,研究团队面临大量的参数调测和精密的芯片测试,利用有限的设备、场地条件,通过克服困难以及夜以继日的反复攻关,持续投入时间和精力改善测试条件、优化测试环境,最终实现了芯片的高性能工作。

    这项技术具有通用性,能够为涉及光与电技术的系统带来显著提升。其最直接的应用领域是无线通信和感知,包括未来的 6G、太赫兹通信,以及车载毫米波频段感知等。

    此外,这项技术在量子时频等领域也具有广泛的应用前景。对于量子计算而言,高频时钟能够简化复杂设备、降低成本,并确保信息处理过程中各个部分的同步,从而为量子计算提供更高效和更经济的解决方案。

    同时,该技术打破了传统主频时钟的限制,能够将时钟频率提升至少两个数量级。这意味着在单位时间内可以显著增加计算次数,从而极大提升计算效率。更长远地来看,高频时钟信号配合电芯片共同完成相关功能,有望驱动速度更快的 AI 计算,从而提升 AI 模型的训练和推理效率。

    现阶段,该课题组已经成功开发出光子芯片系统的批量化加工工艺,能够在 8 英寸晶圆上直接生产成千上万个相同的时钟芯片,并且能够对外提供完全封装的器件,供用户直接使用。

    图丨基于微梳子的振荡器和频率合成器

    与传统能够产生 100GHz 时钟信号的电子芯片相比,光芯片时钟技术直接在片上集成高频信号生成模块,采用了硅光大规模量产工艺,类似于目前光模块中所用的芯片技术。

    张祥鹏表示:“光电调制器等变频链路的片上集成,将大幅节省传统方案中复杂的组装和耦合成本。随着后续量产规模的扩大,我们估计成本有望降低 10 倍以上。”

    目前,该课题组在无线通信和感知领域已经开展了一系列实验,并计划进一步拓展到更多光与电相关的应用领域,例如 AI 计算等。此外,他们还将继续解决相关工程化问题,例如将芯片制成稳定的产品、优化封装工艺等。

  • 原文来源:https://www.nature.com/articles/s41928-025-01349-7
相关报告
  • 《我国科学家在“连续变量”集成光量子芯片领域实现新突破》

    • 来源专题:能源情报网监测服务平台
    • 编译者:郭楷模
    • 发布时间:2025-02-21
    • 我国量子科技研究迎来突破性进展。《自然》杂志20日发布一项重要研究成果,我国科研团队成功实现全球首例基于集成光量子芯片的“连续变量”量子纠缠簇态。相关专家表示,这一成果填补了采用连续变量编码方式的光量子芯片关键技术空白,也为光量子芯片的大规模扩展及其在量子计算、量子网络等领域的应用奠定重要基础。 集成光量子芯片是一种能在微纳尺度上编码、处理、传输和存储光量子信息的先进平台。如何在光量子芯片上实现大规模量子纠缠是国际量子研究难题。量子纠缠簇态作为一种典型的多比特量子纠缠态,是量子信息科学的核心资源,然而其确定性、大规模制备面临巨大实验困难,尤其连续变量簇态的光量子芯片的制备和验证技术在国际上仍属空白。 经多年攻关,北京大学教授王剑威、龚旗煌和山西大学教授苏晓龙等带领的研究团队,成功攻克关键技术瓶颈,创新性发展了连续变量光量子芯片调控、多色相干泵浦与探测技术,实现了确定性、可重构的纠缠簇态制备,并对簇态纠缠结构进行实验验证。 王剑威介绍,量子比特可分别通过离散变量编码、连续变量编码方式在光量子芯片上实现。为制备出具有超高保真度的量子比特,以往通常采用基于单光子的离散变量编码方式,但该方法的成功率随量子比特数增加呈指数下降。为此,团队采用基于光场的连续变量编码方式,破解了制备量子比特和量子纠缠的“概率”难题,首次实现了量子纠缠簇态在芯片上的“确定性”产生。 “这是我国科学家在集成光量子芯片技术领域取得的新突破。”龚旗煌表示,这一原创成果为大规模量子纠缠态的制备与操控提供了全新的技术路径,对推动量子计算、量子网络和量子模拟等领域的实用化发展具有重要意义。 《自然》杂志审稿人评价称:“这项工作首次在光量子芯片上实现多比特的连续变量量子纠缠,是可扩展光量子信息处理的重要里程碑。”
  • 《科学家利用激光耦合开发出新型全光子集成电路技术》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2022-12-21
    • 光子学技术的应用日益广泛,不过为了充分发挥其潜力,光子学技术产品必须变得更小、更便宜、更容易生产。当下,全球范围内的研究人员在这些方面已经取得了进展,但如何让电路在较短波长的光下顺畅运行仍然是一个挑战。 近期,来自Nexus Photonics、加州大学圣巴巴拉分校(UC Santa Barbara)和加州理工学院的研究人员们宣布成功开发出一种技术,使光子芯片能够在可见到近红外光谱中工作。这项技术有望使这些组件更小、更强大;并且其依赖于电子制造中常见的方法,有望以低成本实现大规模生产。 最终,该技术有利于将高性能光子学引入新的市场和应用,如增强现实和虚拟现实、医疗保健和可见/近红外波长的原子钟等。而且它在大规模生产这一点上的优势,将帮助大幅降低激光和光子电路的价格。 一波三折:光子电路制造技术开发过程 光子电路小型化的一个障碍是将激光连接到光子电路本身,要将其插入每个路径那显然是不切实际的。在2005年,由约翰·鲍尔斯领导的加州大学圣巴巴拉分校的研究人员解决了硅电路的激光连接问题。他们克服了这一障碍,将激光材料直接粘在硅上,并将光线向下弯曲到波导中。 此后,不少研究机构对类似的技术进行过开发,英特尔还以每年数百万美元的押注力推其商业化。但可惜的是,这些解决方案只适用于波长大于1100纳米的深红外光。由于每个半导体都有带隙能量,能量更高或波长更小的光子会被材料吸收。 例如,硅的带隙大约是1100纳米,那么紫外线(UV)、可见光,甚至一些红外线都会被硅波导吸收。这导致虽然硅在电子学方面表现良好,但它在光子学方面的应用却很有限。 不过,带隙约为250纳米、处于紫外线光谱部分的氮化硅材料就比较具备开发潜力。而且由于它是一种硅化合物,它很容易与电子制造过程集成。它主要的成分硅和氮在地球上也很丰富,而且价格便宜。 在确定了合适的材料后,由于氮化硅的折射率与激光材料的折射率不同,将激光连接到波导又成为了研究团队面临的新挑战。因为这会使得激光层的光束很难弯曲到它下面的氮化硅波导中。 在实验中,研究小组在激光的同一平面上添加了折射率接近氮化硅的中间材料。通过这种方式,激光可以正面进入过渡波导,然后从具有类似光学特性的材料定向向下进入氮化硅。就这样,该团队在设计方案上向前迈进了一步,但要使该工艺与标准电子制造工艺兼容也是一大棘手问题。 斩获成果:利用氮化硅实现低成本商业铸硅 最终上述研究团队终于优化了这项技术,他们打造出完整加工的4英寸晶圆(里面包含数千个器件),并使其在小于一毛钱成本的情况下,性能远超大型商业系统。 颇具突破性意义的是,它首次为可见光到近红外波长的全光子集成提供了一个可行的、可扩展的解决方案。相关研究结果已发表在《自然》(Nature)杂志上。 这种激光耦合技术将使高功率精密光子学的成本降低几个数量级,应用前景广阔。通过生物传感和DNA测序等应用,该技术在生物医学科学中具有潜力。它还可以为原子物理学和量子方面的研究开辟道路。 商用硅晶圆的使用,这也将意味着世界上每一所学校的每一位大学教授都能负担得起目前只有在大型研究机构才能实施的设备和实验。 此外,这项技术还可以用来检测同一芯片上的光线来自哪里。 目前,该团队计划最终将光子电路和电子电路集成到同一个芯片上,在成本和性能上实现更高的效率。