《大连化学物理研究所产油酵母系统生物学研究取得新进展》

  • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
  • 编译者: wukan
  • 发布时间:2018-06-02
  •   近日,大连化学物理研究所生物质高效转化研究组(1816组)赵宗保研究员团队在产油酵母系统生物学研究领域取得新进展,相关成果发表在《生物燃料技术》(Biotechnology for Biofuels)上。

      产油酵母将生物质资源转化为微生物油脂,可用于制造先进液体生物燃料和油脂化工产品。但生物质等廉价原料因含有较丰富的氮源,不利于产油酵母积累油脂。

      该研究组团队前期发现一株高产油脂的圆红冬孢酵母,注释了其基因组(Nat. Commun.),并发现通过限制磷供给,可使产油酵母高效利用富氮原料,为生物质制油脂提供了新技术(Bioresour. Technol.)。在本工作中,科研人员采用系统生物学方法,揭示了圆红冬孢酵母应答磷限制并过量积累油脂的分子机制,包括上调RNA降解、细胞自噬和油脂合成;下调核糖体合成、细胞增殖和三羧酸循环,并将该机制成功用于指导构建了更适合磷限制环境产油的工程菌株。该研究结果丰富了对产油微生物生理代谢的科学认识,对设计高效脂质合成细胞工厂具有重要参考价值。

      以上研究工作得到国家自然科学基金委资助。

相关报告
  • 《大连化学物理研究所单原子催化剂应用于生物质转化反应研究取得新进展》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:wukan
    • 发布时间:2018-06-07
    •   近日,我所航天催化与新材料中心的王爱琴研究员、张涛院士团队在长期从事单原子催化剂和生物质转化研究基础上,首次将高金属载量的Ni-N-C单原子催化剂应用于生物质转化反应中并取得重要进展。相关工作以通讯形式发表在《德国应用化学》(Angew. Chem. Int. Ed.)上,并被选为热点文章(Hot paper)。   生物质作为一种可再生碳资源,将其转化为多元醇、芳烃、烷烃等高附加值化学品具有重要意义。Ni基催化剂在生物质的加氢、加氢裂解和加氢脱氧等反应中已被证明具有高催化活性。然而,在生物质转化的反应介质中(强酸、高温、水热),大部分Ni基催化剂并不能够稳定存在,这主要是由于低价态Ni0/Niδ+催化活性物种在酸溶液中发生溶解、流失以及聚集长大等过程,从而导致催化剂的失活。该缺点也成为了限制Ni基催化剂应用于生物质转化反应中巨大的障碍。因此,急需发展一种新型耐酸稳定的Ni基催化剂并用于生物质加氢领域。   近来,M-N-C单原子 (M通常指Fe/Co/Ni等过渡金属) 在ORR、HER、CO2电还原等电化学反应以及有机合成中表现出优异性能。得益于过渡金属M与杂原子N之间的强配位作用,M-N-C单原子催化剂有望抵抗住酸流失和热聚集。此前,该研究团队已经合成出单原子分散的Co-N-C催化剂和Fe-N-C催化剂(J. Am. Chem. Soc., Chem. Sci.),经过酸刻蚀处理后的Co/Fe单原子在还原反应和氧化反应中表现出非常优异的稳定性。在此基础上,近日,该团队又发展了金属载量高达7.5wt%的Ni-N-C单原子催化剂,并应用于纤维素转化制备多元醇 (乙二醇和羟基丙酮)反应。对比活性炭负载的镍纳米颗粒催化剂 (Ni/AC),Ni-N-C单原子催化剂在245°C、6MPa的H2氛围、强酸和高温水热的苛刻条件下,表现出很好的耐久性,催化剂可循环7次以上且未见明显的活性降低和单原子聚集长大。通过深入表征,成功解析出Ni-N-C单原子催化剂的活性中心为(Ni-N4)┅N构型,并通过与清华大学的李隽教授合作,借助理论计算与对照实验,揭示了H2分子是通过在Ni2+(路易斯酸位)和近邻未配位的吡啶态N原子 (路易斯碱位) 组成的FLPs(受阻路易斯酸碱对)位点上以异裂方式解离活化的。   上述研究工作得到国家自然科学基金委、科技部、中国科学院战略性先导科技专项和教育部能源材料化学协同创新中心的资助。
  • 《大化所长链α-烯烃生物合成研究取得新进展》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:wukan
    • 发布时间:2018-03-07
    • 近日,大化所合成生物学与生物催化创新特区研究组周雍进研究员与瑞典查尔姆斯理工大学Jens Nielsen教授合作,通过构建酵母细胞反应器,高效的合成出了长链α-烯烃。相关研究成果发表于合成生物学领域杂志《美国化学会—合成生物学》(ACS Synthetic Biology, 2018, DOI: 10.1021/acssynbio.7b00338)上。 长链(C12―C20)α-烯烃(long-chain α-alkene)是制备生物燃料、增塑剂、高性能合成润滑油、洗涤剂和香料等多种化工产品的重要原料。目前,其主要来源于化石资源,通过石蜡裂解、烷烃脱氢及乙烯齐聚等化学工艺生产获得。 为了拓展长链α-烯烃可持续生物合成的路线,该研究团队以酿酒酵母为宿主,通过脂肪酸脱羧反应合成长链α-烯烃。科研人员通过比较不同酶效率,发现来源于荧光假单胞菌(Pseudomonas fluorescens)的UndB酶可高效合成长链α-烯烃。此外,研究团队还通过改造脂肪酸代谢强化前体的供给,引入电子传递链,从而提高生物合成效率;通过引入α-烯烃转运蛋白,增加了长链α-烯烃的分泌,从而降低产物分离成本;通过设计动态代谢调控策略,平衡了细胞生长与产物合成,降低了代谢负担,从而提高了酿酒酵母性能。