《南京农业大学徐东清团队在《Cell Reports》发表研究,首次阐明B-box蛋白BBX10与PIF1形成转录调控模块,通过协调原叶绿素酸酯代谢和活性氧清除系统,精准调控植物幼苗从暗形态到光形态的转变过程》

  • 编译者: 季雪婧
  • 南京农业大学徐东清团队在《Cell Reports》上发表了一项重要研究,首次揭示了B-box蛋白家族成员BBX10在幼苗去黄化过程中的关键作用。研究发现,BBX10通过与光敏色素相互作用因子PIF1形成转录调控模块,精确调控叶绿素合成途径,从而在幼苗从暗形态建成(skotomorphogenesis)到光形态建成(photomorphogenesis)的转变过程中发挥重要作用。 具体而言,BBX10能够抑制原叶绿素酸酯在黑暗中的积累,减少光照后活性氧(ROS)的生成,从而防止光氧化损伤和细胞死亡。研究使用了包括基因编辑、免疫共沉淀、荧光素酶报告系统等多种技术方法,证实BBX10通过"双保险"机制调控原叶绿素酸酯稳态,并通过激活抗氧化系统保护细胞。此外,BBX10还通过增强PIF1对靶基因GUN5和APX2的调控,实现双向调控,确保幼苗安全完成从异养到自养的转变。 该研究不仅完善了植物光形态建成的理论体系,还为培育抗强光胁迫作物提供了新思路,即通过调控BBX10-PIF1模块活性,可望增强作物在突然见光条件下的存活率。同时,这一发现展示了转录因子组合调控的典型范例,体现了"支架蛋白"如BBX10在增强核心转录因子如PIF1的DNA结合能力和转录活性方面的作用,从而实现更精确的基因表达调控。
相关报告
  • 《南京农业大学Genome Biology构建世界首个植物重复基因数据库》

    • 来源专题:转基因生物新品种培育
    • 编译者:zhangyi8606
    • 发布时间:2019-12-30
    • 植物在千百年的进化中,怎样变得越来越多姿多彩?一个重要因素,就是植物会复制自己基因,丰富自己的基因库数量。多了自己的“同胞胎”兄弟姐妹,基因在生物体中就“声势壮大了”,团结起来力量大,不仅能抵御外界复杂多变的环境,还能增加进化变异的机会,实现物种分化和多样性。 以往的研究发现,有的植物有复制自己基因的功能,即通过不同类型复制方式产生一个与原基因序列相同的新基因。基因复制产生的两个同源基因称为重复基因或“姊妹基因”。近年来,随着测序技术的不断升级和测序成本的大幅度降低,越来越多的植物基因组被破译。 目前已经完成全基因组测序的植物超过200种,包括单细胞绿藻,苔藓类植物,蕨类植物,裸子植物以及被子植物。然而,目前仍缺乏一个具有广泛适用性的鉴定不同种类植物重复基因的方法。 来自南京农业大学园艺学院的研究人员发表了题为“Gene duplication and evolution in recurring polyploidization–diploidization cycles in plants”的文章,系统鉴定了梨等141种植物基因组中不同类型重复基因,构建了世界首个植物重复基因数据库,揭示了重复基因进化的普遍规律。 这一研究成果公布在Genome Biology杂志上,南京农业大学为第一完成单位,文章第一作者为乔鑫,通讯作者为南京农业大学张绍铃教授和美国佐治亚大学Andrew H.Paterson教授。 此前,这一研究组系统鉴定梨基因组中重复基因的基础上,开发了一个具有普遍适用性的生物信息学方法(命名为DupGen_finder),用于鉴定植物界中不同种类植物基因组中的重复基因。 在此基础上,研究人员深入分析141种植物基因组中重复基因含量随时间变化规律发现,基因串联复制和邻近复制在植物漫长的进化过程中始终保持较高的发生频率,为植物适应复杂多变的外界环境提供了源源不断的遗传变异材料。同时该研究还揭示,基因组加倍发生后的较短时间内,重复基因之间发生高频率的基因置换(geneconversion),随着时间的推移,重复基因之间会发生广泛的时空表达分化。最后,利用141种植物基因组中包含的所有蛋白序列构建了大规模的植物直系同源基因家族(86,831)。 此外,研究人员还通过大规模收集整合国内外植物基因组数据资源,构建了世界首个植物重复基因数据库(PlantDGD,http://pdgd.njau.edu.cn:8080),目前已收录141种完成基因组测序的植物,包含大豆、水稻、小麦、玉米等大宗粮食作物,以及梨、桃、葡萄、蔬菜、花卉等园艺作物,并将拓展为植物相关的所有类别。该数据库将为深入研究重复基因的进化机制提供宝贵的数据资源。 张绍铃教授领衔的南京农业大学梨工程技术研究中心主要从事梨种质资源与遗传育种,梨自交不亲和性机理,基因组与功能基因,品质形成机制与调控等方面的研究。已在Genome Biology、Genome Research、Plant Cell、Plant Journal和NewPhytologist等国际著名期刊上发表了多篇高水平研究论文,其中一篇论文入选ESI高被引论文,得到了国内外同行的高度关注和认可。 原文标题: Gene duplication and evolution in recurring polyploidization–diploidization cycles in plants https://genomebiology.biomedcentral.com/articles/10.1186/s13059-019-1650-2
  • 《中国农业科学院团队在《International Journal of Biological Macromolecules》发表研究,首次揭示N-末端乙酰转移酶复合体调控植物病原真菌致病性的分子机制》

    • 编译者:季雪婧
    • 发布时间:2025-07-21
    • 西瓜是全球重要的经济作物,但长期受到由尖孢镰刀菌西瓜专化型(Fon)引起的枯萎病威胁,造成巨大经济损失。尽管已知该病原菌通过分泌多种毒力因子侵染宿主,但其致病调控网络仍有许多未解之谜。中国农业科学院植物保护研究所的研究团队在《International Journal of Biological Macromolecules》上发表了一项重要研究,首次系统解析了N-末端乙酰转移酶(NAT)复合体在植物病原真菌致病性中的调控机制。 研究人员通过比较基因组学、分子遗传学和生物化学等多学科方法,发现FonNatA复合体通过乙酰化修饰bZIP家族转录因子FonMeaB,建立了氮源感知与致病性调控的分子桥梁。他们采用了基因敲除和回补实验、酵母双杂交和免疫共沉淀(Co-IP)分析、染色质免疫沉淀测序(ChIP-seq)、质谱检测和植物病理学实验等多种技术手段,系统评估了不同突变体的致病表型。 研究发现,Fon基因组中存在5个保守的NAT复合体,其中FonNatA由催化亚基FonNaa10和辅助亚基FonNaa15组成。敲除FonNaa10或FonNaa15导致菌株营养生长缺陷、分生孢子形态异常,且对氧化应激更为敏感,致病性降低约70%。回补实验证实了这些表型确实由基因缺失引起。 深入讨论表明,FonNaa10具有双重酶活性,既能催化N-末端乙酰化,又能介导赖氨酸ε-氨基乙酰化(Nε-acetylation)。质谱分析鉴定出FonMeaB第69位赖氨酸(K69)是FonNaa10的直接作用靶点。在硝酸铵条件下,K69乙酰化稳定了FonMeaB蛋白,抑制下游FonNmr基因表达;而在硝酸钠条件下,去乙酰化导致FonMeaB降解,解除对FonNmr的抑制。这种氮源依赖的乙酰化调控模式解释了病原菌在不同环境中的致病性差异。 总结指出,该研究首次揭示了NatA复合体在植物病原真菌中的非经典功能,发现了一个全新的致病调控通路:FonNatA-FonMeaB-FonNmr级联反应。这一发现为理解蛋白质乙酰化修饰如何整合环境信号(氮源)与致病性提供了范例,也为开发靶向NAT复合体的新型杀菌剂奠定了理论基础。研究的创新性主要体现在突破了传统对NAT的认知,揭示了其在信号转导中的新功能,发现了新型顺式作用元件BSMN,以及建立了"乙酰化-氮代谢-致病性"调控模型。这些发现不仅对植物病理学领域具有重要价值,也为真核生物的蛋白质修饰研究提供了新视角。