《南京农业大学Genome Biology构建世界首个植物重复基因数据库》

  • 来源专题:转基因生物新品种培育
  • 编译者: zhangyi8606
  • 发布时间:2019-12-30
  • 植物在千百年的进化中,怎样变得越来越多姿多彩?一个重要因素,就是植物会复制自己基因,丰富自己的基因库数量。多了自己的“同胞胎”兄弟姐妹,基因在生物体中就“声势壮大了”,团结起来力量大,不仅能抵御外界复杂多变的环境,还能增加进化变异的机会,实现物种分化和多样性。

    以往的研究发现,有的植物有复制自己基因的功能,即通过不同类型复制方式产生一个与原基因序列相同的新基因。基因复制产生的两个同源基因称为重复基因或“姊妹基因”。近年来,随着测序技术的不断升级和测序成本的大幅度降低,越来越多的植物基因组被破译。

    目前已经完成全基因组测序的植物超过200种,包括单细胞绿藻,苔藓类植物,蕨类植物,裸子植物以及被子植物。然而,目前仍缺乏一个具有广泛适用性的鉴定不同种类植物重复基因的方法。

    来自南京农业大学园艺学院的研究人员发表了题为“Gene duplication and evolution in recurring polyploidization–diploidization cycles in plants”的文章,系统鉴定了梨等141种植物基因组中不同类型重复基因,构建了世界首个植物重复基因数据库,揭示了重复基因进化的普遍规律。

    这一研究成果公布在Genome Biology杂志上,南京农业大学为第一完成单位,文章第一作者为乔鑫,通讯作者为南京农业大学张绍铃教授和美国佐治亚大学Andrew H.Paterson教授。

    此前,这一研究组系统鉴定梨基因组中重复基因的基础上,开发了一个具有普遍适用性的生物信息学方法(命名为DupGen_finder),用于鉴定植物界中不同种类植物基因组中的重复基因。

    在此基础上,研究人员深入分析141种植物基因组中重复基因含量随时间变化规律发现,基因串联复制和邻近复制在植物漫长的进化过程中始终保持较高的发生频率,为植物适应复杂多变的外界环境提供了源源不断的遗传变异材料。同时该研究还揭示,基因组加倍发生后的较短时间内,重复基因之间发生高频率的基因置换(geneconversion),随着时间的推移,重复基因之间会发生广泛的时空表达分化。最后,利用141种植物基因组中包含的所有蛋白序列构建了大规模的植物直系同源基因家族(86,831)。

    此外,研究人员还通过大规模收集整合国内外植物基因组数据资源,构建了世界首个植物重复基因数据库(PlantDGD,http://pdgd.njau.edu.cn:8080),目前已收录141种完成基因组测序的植物,包含大豆、水稻、小麦、玉米等大宗粮食作物,以及梨、桃、葡萄、蔬菜、花卉等园艺作物,并将拓展为植物相关的所有类别。该数据库将为深入研究重复基因的进化机制提供宝贵的数据资源。

    张绍铃教授领衔的南京农业大学梨工程技术研究中心主要从事梨种质资源与遗传育种,梨自交不亲和性机理,基因组与功能基因,品质形成机制与调控等方面的研究。已在Genome Biology、Genome Research、Plant Cell、Plant Journal和NewPhytologist等国际著名期刊上发表了多篇高水平研究论文,其中一篇论文入选ESI高被引论文,得到了国内外同行的高度关注和认可。

    原文标题:

    Gene duplication and evolution in recurring polyploidization–diploidization cycles in plants

    https://genomebiology.biomedcentral.com/articles/10.1186/s13059-019-1650-2

相关报告
  • 《农业掀起“基因”浪潮,基因编辑和转基因技术商业化提速》

    • 来源专题:转基因生物新品种培育
    • 编译者:zhangyi8606
    • 发布时间:2020-11-12
    • 全球农业颠覆式发展必然少不了农业生物技术的创造性力量。 农业生物技术是指运用基因工程、发酵工程、细胞工程、酶工程以及分子育种等生物技术,改良动植物及微生物品种生产性状、培育动植物及微生物新品种、生产生物农药、兽药与疫苗的新技术。广义基因工程技术中的基因编辑和转基因技术在农业领域的应用备受关注。 说到基因编辑,其近年来的发展可谓是叱咤风云,在医学领域大放异彩不说,又屡次角逐诺奖。当走在科技前沿的基因编辑遇上正在追赶科技的农业,它们之间所发生的奇妙化学反应将为农业带来全新的发展机会。例如:早在2013年,以CRISPR/Cas9系统为标志的第三代基因编辑技术就取得了决定性突破,打破了常规育种瓶颈,成为基因编辑主流技术。 与基因编辑一样,转基因自被人们认识以来便是万众瞩目。根据国际农业生物技术应用服务组织2019年9月发布的《2018年全球生物技术/转基因作物商业化发展态势》报告,当年全球有26个国家和地区种植转基因作物,种植面积超1.9亿公顷,其中美国、巴西、阿根廷、加拿大和印度的转基因农作物种植面积占全球转基因作物种植面积的91%。 基因编辑和转基因技术在农业领域的应用 医疗和农业是基因编辑的两大重要应用领域。在农业方面,世界各地的研究人员利用植物和动物的测序来研究不同物种的基因组,进行农作物全品种基因测序将会推动农业发展,增加作物产量。 基因编辑技术不仅可以突破传统育种难以解决的遗传障碍,而且能实现特定性状的精准改变,颠覆已有动物遗传改良技术路径和选育效率。伴随着基因编辑技术的不断改进及其在动植物上的广泛应用,农业领域的颠覆性变革悄然在进行。 1994年,Calgene推出第一个基因工程食物Flavr Savr番茄。1996年,孟山都公司(Monsanto)推出第一批基因修饰农作物,很快这些基因修饰食品占据了市场。2016年初杜邦宣布,在2020年即将诞生一款新的玉米品种,将是史上第一例商业化的基因编辑农作物。2018年,美国食品药品监督管理局(FDA)发布新规,撤销对CRISPR作物的严格管控,鼓励CRISPR植物的种植试验。 与基因编辑有所不同,转基因技术能将一个生物体中结构明确、功能清楚的基因取出,让其在另一个作物体内发挥作用,实现基因在不同物种间的重组。这项新技术不仅更精准,而且利用其他物种的基因资源能极大扩充作物自身的基因库,使作物具备抗虫、耐除草剂、抗旱等特性。动物转基因技术则在提高畜禽生产性能、改善畜产品品质、提高畜禽抗寒抗病能力等方面应用广泛。 作为现代生物工程的一个重要手段,许多发达国家和发展中国家都在大力研究开发转基因技术。我国转基因作物研究始于20世纪80年代,是开展这项新技术研发最早的国家之一。 2008年中央一号文件首次提出,启动转基因生物新品种培育科技重大专项。当年10月党的十七届三中全会决定强调,实施转基因生物新品种培育科技重大专项,尽快获得一批具有重要应用价值的优良品种。随后出台的《国家粮食安全中长期规划纲要》也对转基因生物新品种培育科技重大专项提出明确研发方向。 跟随国家政策的指引,行业内的头部企业逐渐开始了在农业生物技术领域的探索,例如华大基因和隆平高科。 华大基因:推进动植物育种进程 华大基因成立于1999年,是全球领先的生命科学前沿机构,拥有多种平台,可以在DNA水平、RNA水平、表观遗传学等各个水平对动植物各种表型性状进行全方位的研究,并结合质谱技术开展蛋白质组水平的研究,利用贯穿组学深度解析动植物界的科学问题,检测与人类息息相关的农艺性状相关基因、研究动植物进化、抗病、抗逆、生殖发育等生理机制,为育种挖掘多样性的遗传资源,为推进动植物育种进程奠定坚实的理论基础。 其产品RNA-Seq主要用于系统进化/物种起源、生长发育、抗逆及致病机理研究、生物标记(分子育种)等研究。此外,华大基因还在利用自主DNBSEQTM测序技术的基础上,自主开发了双链环化的文库制备新方法,可快速高效获取真实的甲基化水平数据,以及动植物育种、人类健康与疾病等应用性研究。 华大基因基于公司领先的数据处理分析能力,丰富的科研项目经验,公司在科研方面也取得了一系列突破性成果。2019年,公司与多家国内外科研机构在全球顶尖学术期刊上发表了50篇农业基因相关科研论文。其中,2019年3月11日,与芝加哥大学、亚利桑那大学等团队合作在Nature Ecology & Evolution上发表了迄今为止最大的水稻高质量新蛋白质数据集的成果。2019年5月,与华中农业大学在Nature Genetics上发表迄今为止质量最高的热带玉米参考基因组,并公布了首份玉米结构变异图谱。 华大基因于2019年5月与碧桂园农业控股有限公司签署股权转让协议,将其持有的华大农业80%股权转让给碧桂园。碧桂园布局农业全产业链条,着力打造科技型、平台型、国际型农业。 隆平高科:高位布局玉米转基因品种开发 隆平高科自设立以来一直以现代种业产业化为发展方向,利用现代生物技术,主要从事农作物高科技种子及种苗的研发、繁育、推广及服务。 在生物技术板块,隆平高科在华智生物技术有限公司、隆平高科长沙生物技术实验室、隆平高科生物技术(玉米)中心等分子育种平台基础上,投资设立湖南隆平高科第三代杂交水稻种业有限公司,聚集新一代杂交水稻技术开发,投资杭州瑞丰生物科技有限公司,成立隆平生物技术(海南)有限公司,高位布局玉米转基因品种开发,进一步提升公司研发能力,巩固公司产品及科技领先优势,抢占新技术周期背景下行业竞争的战略制高点。 2020年1月21日,农业农村部公布了2019年农业转基因生物安全证书(生产应用)批准清单,其中包括隆平高科参股公司杭州瑞丰生物科技有限公司的转基因玉米瑞丰125,该玉米融合两个Bt抗虫基因,能有效控制我国玉米田的主要鳞翅目害虫,预期在延缓害虫抗性产生方面具有优势,所含抗除草剂基因是具有我国自主知识产权的创新型基因,可满足我国农民田间除草需求。此外,对目前入侵我国西南地区、黄淮海地区的草地贪夜蛾也具有一定的抗性。 作为行业龙头,隆平高科在传统研发和以转基因技术为代表的生物技术储备方面准备充足、能力叠加,将进一步巩固和提升其行业优势地位。 大北农:转基因大豆产品取得里程碑式进展 大北农集团主营业务有饲料、养猪、水产、疫苗、作物、农业互联网六大产业,拥有近20000名员工、1500多人的核心研发团队、120多家生产基地和300多家分子公司。其作物科技产业聚焦生物技术、绿色良种、新型肥料、环保农药的创新研发与服务推广,为农民提供全产业链的种植科技服务。 2019年2月27日,大北农收到阿根廷国家政府的生产及劳动部正式书面通知,公司下属子公司北京大北农生物技术有限公司研发的转基因大豆转化事件DBN-09004-6获得阿根廷政府的正式种植许可。这是大北农转基因大豆产品在国际南美地区市场取得的重要里程碑式进展,也是大北农生物技术的研发和转化在国际南美地区取得的重大进展,也为大北农生物技术的市场化应用和经营拓展了较为广阔的市场空间。 行业发展空间巨大,创新企业步履不停 2019年12月30日,农业农村部科技教育司发布《关于慈KJH83等192个转基因植物品种命名的公示》,拟批准为192个植物品种颁发农业转基因生物安全证书目录,其中包括2个玉米品种和1个大豆品种,这是距2009年2个水稻1个玉米获得转基因生物安全证书之后,又有中国研究的主要农作物获得转基因生物安全证书。 国产转基因品种十年磨一剑,长时间沉淀的坚实基础将推动我国农业生物技术产业进入一个新的快速发展时期,未来发展空间巨大。在农业生物技术领域除了头部企业的探索,创新企业也加快了发展步伐。 康普森:动植物分子育种 北京康普森生物技术有限公司(以下简称“康普森”)成立于2011年,公司提供基于新型农业基因组技术的动植物分子育种、特色农业基因+以及现代化农业生产、现代设施农业整体解决方案。 2015年,康普森生物开始向农业产业化发展。第二年,为进一步推广基因组选择技术和产业化应用,康普森生物正式启动了产业联盟,在全国范围内先后发起了“猪基因组选育北京联盟”、“全国肉鸡全基因组选择育种联盟”、“畜禽良种产业技术创新战略联盟”等多个行业联盟,通过与不同机构合作,共同打造联合育种“产学研”院企合作平台,实现专注分子育种,用“大数据解决选育问题”的目标。 2018年,作为康普森生物的全资子公司,康普森农业推出了个性化育种方案制定、畜禽基因组选育、选配策略制定、遗传疾病评估、功能基因检测等一站式育种服务,为科研工作者和育种企业提供了多项个性化服务,这对培育自主品种、打造民族品牌、提升核心种源自给率、推动畜牧基因组实现产业化有着重要作用。 古奥基因:基因组选择育种平台研发 武汉古奥基因科技有限公司(以下简称“古奥基因”)是一家以二代和三代高通量测序、生物信息分析、交互分析报告、多组学知识库和基因组选择育种平台研发为技术核心的高科技公司。 古奥基因自成立以来,一直致力于布局基因数据产业,从数据产出,到分析,到深度挖掘,基因应用。目前公司已建立形成“三中心两基地”,包括武汉古奥基因(总部研发和运营中心)、重庆揩火基因(大数据中心)、嘉兴古奥(分子育种中心)、牡丹江大豆育种基地、东西湖育种基地。 其产品古奥基因组选择育种平台是通过整合和开发全基因组关联分析、全基因组选择育种、育种模拟等方法,开发的一个全自动化的育种分析平台,包含了数据管理,图表可视化,在线分析等一系列功能模块。平台利用配置好的育种分析方案进行全自动育种分析,使得育种研究人员在不需要底层生物信息和数量遗传算法的基础上,真正实现基于基因大数据的动植物品种选育方案设计。 当然不只是我国农业领域在推进基因工程技术的创新应用,自2019年开始,一些国家及地区政府进一步释放信号,鼓励转基因农作物种植和应用。 在欧洲,英国首相约翰逊提出要“解放”英国的转基因产业,欧盟委员会宣布批准10种转基因产品在欧盟上市;在美洲,美国总统要求联邦政府相关监管机构简化、加快农业生物技术产品的审批流程,从而加快农业生物技术新产品的审批、降低开发者的成本、鼓励对转基因农作物进行更多投资;在澳洲,南澳大利亚州政府决定从2020年起解除该州除袋鼠岛以外有关种植转基因作物禁令,至此澳大利亚大陆所有州都取消了转基因作物种植禁令。 以下是国外几家在农业基因工程技术领域较有代表性的企业。 Indigo Ag:创建农业微生物基因组信息数据库 Indigo Ag成立于2014年,起初只是Flagship pioneering发起的100多家创业公司之一。但在经过几年的发展以后,它已然成长为一家900多人规模的企业,累计融资金额超8亿美元,估值更是超过了35亿美元。 Indigo Ag利用人工智能算法和机器学习技术,创建了一套农业微生物基因组信息数据库,分析出对植物健康最有帮助的微生物,可以抵御农作物病虫害,增加营养摄入量以及水分利用率,继而提升产能,让农民获得可持续的收成。 目前,该公司的种子处理技术主要用于五种作物——玉米、小麦、大豆、水稻和棉花。2018年,indigo的玉米每英亩产量比传统种子高出10%以上,小麦产量提高了近15%。 Benson Hill:改良作物基因 Benson Hill成立于2012年,是一家集云计算、大数据分析和植物生物学为一体的农业科技公司,多年以来利用其建立的CropOSTM生物信息平台,帮助各大公司改良作物基因,提高作物品质,一直以来受到业内的广泛好评。 其最新研发的种子品种在保证农民产量的同时,还具备最优的蛋白质和油脂组成,可以提高饲料消化效率、降低胰蛋白酶抑制效果,并具备小众市场和大众终端用户所追求的其余品质。其中一个产品是eMerge Genetics的产品组合,这是一个国际知名的非转基因大豆品种组合,有资格通过非转基因认证并在包括欧盟在内的所有市场销售,极具推广潜力。 行业产业化前景诱人,技术壁垒问题仍待解决 《2020年农业农村科教环能工作要点》指出,要着力提高科技创新的产业贡献度着力强化科技扶贫,加强基础前沿储备,面向国际前沿,围绕生物种业、智能农机装备、数字农业等领域,强化基因编辑、合成生物学、大数据、人工智能等基础前沿研究,增强原始创新能力。继续组织实施转基因生物新品种培育重大专项,进一步强化生物育种技术研究和产品熟化,推进优良新品系遴选和第三方验证,夯实产业化基础。 在政策引领下,随着技术研发的深入,基因编辑的技术优势不断凸显,并逐渐转化为产业优势,已经在动植物育种方面显示了广阔的前景。据美国Kalorama Information公司估计,2025年基因编辑及其相关供应市场规模有望突破50亿美元。华泰证券研究报告则预测到2030年,我国转基因种子市场规模有望达到460亿元,利润总额有望达到157.8亿元。 尽管随着人们逐渐对基因编辑和转基因技术认知增多,基因工程技术产业化也与市场需求结合紧密,产业化前景诱人,但其产业化仍然受到技术壁垒、编辑效率等瓶颈问题的制约。但不论如何,基因工程技术将成为作物育种和农业生物技术研发过程中的一个重要工具,并推动农业领域的一场革命,未来行业中可能诞生千亿市值的龙头种企。
  • 《转基因植物新材料育种价值评估》

    • 来源专题:转基因生物新品种培育
    • 编译者:zhangyi8606
    • 发布时间:2020-10-11
    • 作者:姜奇彦 胡正 孙现军 张辉 (中国农业科学院作物科学研究所) 引言 当前,以转基因育种为代表的生物育种技术发展迅猛,正在推动常规育种全面升级,引领育种产业发生重大变革。从研发进展来看,从基因克隆到新品种培育就像一个金字塔,众多实验室开展了基因克隆、功能分析及优异基因挖掘的研究工作,组成了转基因育种的重要基石。优异基因的遗传转化、转基因材料的创制和目标性状的功能效率评价,作为转基因育种的一个重要阶段承上启下。之后优异的转基因材料从实验室走向田间,完成小、中、大规模的中间试验、环境释放、生产性试验阶段,经受住严格的安全性评价,包括食品安全和环境安全,然后才可以申报安全证书。走到这一阶段的材料可以说是凤毛麟角了。但随着我国转基因研究成果的不断涌现,取得生物安全证书后的转基因植物是否可以作为种质资源利用,进入育种程序,它们的育种利用价值如何,还需要深入评估,才可以不断缩小克隆的基因与育种利用之间的差距,加速转基因作物新品种培育的育种进程。 顾名思义,育种价值评估就是对转基因材料进行育种利用价值进行评估,具体包括功能基因知识产权分析,育种利用价值评估,以及转基因新材料保存及育种价值评估信息管理等几个方面。 功能基因知识产权分析 转基因新材料育种价值评估和知识产权分析有什么关系呢?在世界各国加快培育生物产业、抢占生物经济发展先机的激烈竞争中,知识产权成为占领生物技术制高点,圈占世界生物遗传资源的有力工具。据不完全统计,主要发达国家和国际生物技术公司在农业生物技术领域部署的专利、品种权等知识产权数量估计在30万件以上。与跨国种业巨头相比,国内研究机构在知识产权拥有量,特别是核心功能基因的专利数量与质量上还存在较大差距,很容易陷入跨国公司的知识产权陷阱,从粮种源头丧失保障国家粮食安全的能力。面对发达国家远谋深虑的知识产权布阵设防,必须对我国重要性状基因的知识产权进行科学系统的分析,通过掌握这些重要功能基因在全球知识产权保护的范围、重点及趋势,设计出我国转基因农作物新品种培育、转基因育种成果产业化的合理发展路径,才能有效突破发达国家的专利封锁与围剿,培育出具有自主知识产权的功能基因和生物新品种,这样的转基因新材料才具有更高的自主创新性和更大的育种利用价值。 知识产权的分析包括很多方面,如转基因技术,克隆的基因,甚至包括转基因过程中用到的一些载体、菌株、启动子等。主要通过专利广泛检索获取原始数据,然后进行数据处理、分析和解读,进行知识产权分析,最终为我国的转基因事件提出规避专利纠纷的建议策略。如日本烟草公司(Japan Tobacco INC)建立的农杆菌介导的小麦遗传转化新技术的转化效率高达40%,给小麦功能基因的研究带来了革命性的发展机遇。如果使用该技术,需要从日本烟草公司购买该项专利技术的使用权,并签订相关的规范性文件。而遗传转化过程中用到的载体如pCambia3301、菌株如LBA4404和ubiquitin启动子都是在生物学研究常用的,不受专利保护。采用具有独立自主知识产权的愈伤组织特异性表达的启动子CP代替35S/Ubi来启动选择性标记基因的表达,可以回避因Monsanto公司持有35S启动子而可能产生的专利权纠纷。 转基因植物新材料育种价值评估 转基因生物育种是一项系统科学工程,包含基因克隆、遗传转化、转基因材料创制、新品种培育、产业化推广应用等环节。例如在杜邦先锋种业公司,将转基因生物技术发展归纳为七个阶段(A到G),包含A(New ideas)、B(Evaluate genetic approaches)、C(Optimize gene construct)、D(Create commercial event)、E(Commercial event to regulatory)、F(Breeding and testing)、G(Sell product),其中将E具有育种利用价值的“最佳转化事件”定为最重要的阶段。在我国也在不断加强基因和育种材料的利用价值评估工作,目的是筛选具有重要应用前景的基因和材料,并快速应用于新品种研发。 转基因植物新材料的育种价值评估主要针对目标性状,如抗病虫、抗逆、高产、优质等等。首先明确目标性状的鉴定技术,制定或完善转基因植物目标性状鉴定技术规范或技术标准,利用这些规范或标准对转基因植物新材料的育种利用价值开展综合评估,最终筛选出有重大育种价值的基因和转基因作物育种新材料,应用于转基因生物育种。 对于重大育种价值基因针对不同性状,我国也有初步的判定标准。总体来讲,转基因或分子标记辅助育种研究结果表明重大育种价值基因应该对目标生物的重要经济性状具有显著改良效果,但对其他性状无不良影响。具体举例来讲,如抗棉铃虫性状,参考国家现有棉铃虫抗性标准,抗性达1级以上;如小麦各类抗病性状,抗性达1级以上;如植物抗逆性状,在半致死剂量逆境条件下,与对照相比,转基因作物存活率提高10%以上;在正常环境下,对作物生长发育没有显著负面影响;抗除草剂性状,抗草甘瞵EPSP合酶基因,可以耐受4倍生产上使用剂量的草甘膦,抗草甘瞵N-乙酰转移酶基因,可以耐受4倍生产上使用剂量的草甘膦;作物高产性状,通过转基因或分子标记辅助选择在作物中进行了基因功能验证,提高作物产量5%以上;作物品质性状,极显著改进外观品质,如籽粒外观、加工品质、食味、营养价值等性状,极显著改进度量品质,如纤维长度、强度、细度;作物蛋白质、淀粉、油分、油酸和不饱和脂肪酸、赖氨酸、含硫氨基酸等性状,性状值提高5%以上。养分高效性状,能明显提高养分的吸收或利用效率,与对照相比,在产量不变的前提下,能减少5%-10%氮、磷或钾肥的用量,或在同等施肥条件下,产量比对照提高5%以上;光能高效性状,能明显提高目标作物的光能吸收或利用效率,与对照相比,光能利用效率或抗光氧化能力提高5%以上,或生物量/产量比对照提高5%以上。 对于转基因育种新材料需要具备目标性状表现突出、重要经济性状表现稳定的特点。举例来讲,抗白叶枯病转基因水稻,抗白叶枯病效果达到高抗。鉴定标准参照国际水稻研究所9级分级标准。耐盐转基因水稻,耐盐效果达到中抗以上,鉴定标准参照国际水稻研究所制定的9级分级标准制定。高产转基因水稻,与受体对照品种比较,产量增加10%以上;与区试对照品种比较,产量增加5%以上。抗逆转基因小麦,抗旱性达到极强或强水平,鉴定方法参照2008年农业部颁布实施的“小麦抗旱性鉴定评价技术规范”(GB/T 21127—2007)。高产转基因玉米,东北春玉米区,与受体对照品种比较,产量增加8%以上,与区试对照品种比较,产量增加6%以上;黄淮海夏玉米区,与受体对照品种比较,产量增加5%以上,与区试对照品种比较,产量增加3%以上;西南山地玉米区:与受体对照品种比较,产量增加10%以上;与区试对照品种比较,产量增加5%以上。针对不同的作物,不同的性状,都有各自初步的判定标准。 转基因新材料保存及育种价值评估信息管理 完成了对自主创新的新基因或转基因新材料的目标性状的评价似乎就完成了转基因作物育种价值评估过程。但从长远来讲,这些新材料的保存及信息、材料的共享利用,对于转基因材料在作物育种中的安全、广泛应用也很重要。 我国已建立了国家农作物种质资源库和保存中心,长期保存各类农作物基因资源39万余份,建立了农作物基因资源信息系统和农作物基因资源共享平台。国家种质库未针对转基因材料建立专门的保存设施,尚无转基因材料保存的相关技术标准,在保存手段上相对单一,不能较好地满足转基因材料的保存需求;现有的基因资源信息系统也未制定基因和转基因材料的相关数据标准,转基因材料的信息尚未进入基因信息数据库中,基因和转基因材料的信息,尤其是育种价值评估信息的共享几乎是空白,严重影响了转基因材料的深入和持续利用。许多转基因新材料未纳入国家种质资源保存体系,导致转基因材料分散于各研究单位或专家手中,不利于转基因材料的长期保存和利用,也容易引起潜在的基因污染。因此,迫切需要在国家农作物种质资源库的基础上建立转基因材料的国家管理和保存体系,对转基因材料进行集中编目、接收、检测、保存和分发利用,并建立基因和转基因新材料的数据库,开发信息管理系统,实施跟踪管理,并实现新材料与信息的社会共享。对转基因作物育种价值评估的范畴也应该包括对转基因材料保存的安全性、基因和转基因信息数据库的完善度、信息及材料共享利用的可行性等进行评估,为转基因材料在作物育种中的安全、广泛应用提供重要的保障。 当然,随着各种类型的转基因新材料的不断涌现,转基因新材料在作物育种应用中各种新问题的出现,以及育种家对转基因新材料应用的各种新要求的提出等,对转基因植物育种价值评估的内容及标准也会不断完善和更新,确保转基因新材料在未来转基因生物育种中发挥更重要的作用。