《纳米 letters:缺陷诱导mos2纳米带外延生长及其高效光催化制氢》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2017-11-02
  • 引言

    近年来,随着经济的迅猛发展,我国对能源的需求日益增加。目前,人类仍主要依赖于化石燃料提供能源,过度使用化石燃料已造成严重的能源和环境问题,寻求清洁的可再生能源迫在眉睫。氢气作为一种高效清洁的二次能源载体,被誉为未来的石油。开发和利用无污染的氢能源是替代化石燃料的一种最佳途径,因此受到了各国的高度关注。水分解制氢是以自然界取之不尽的水为原料,通过电催化分解水的方式生成氢气,因此是一种安全、绿色、有效的制氢方法。但是目前全球仅有20%左右的氢气来自于水分解,其主要原因是水分解过度依赖稀有金属做催化剂,比如铂、铱和铑。而这些稀有金属储量少、价格昂贵,无法满足工业生产需要。近年来,寻找价格低廉、自然界储量高的析氢催化剂成为了能源、材料、凝聚态物理、化学等诸多领域的研究热点。

    光催化制氢是一种开路的光电化学反应,主要通过光驱动半导体材料生成电子/空穴对,电子传输到析氢催化剂然后与水反应生成氢气。以电子作为媒介,这种策略实现了光能到化学能的直接转换,是一种能够从根本上替代化石燃料的人工光合技术,因此称为可持续“光子”经济效应。过去二十年,研究的焦点主要集中在如何改性半导体材料,缩小带隙,增加光捕获能力,提高光生电子效率上,而对于析氢催化剂的研究,主要以负载铂为主。直到越来越多的廉价的、高活性的析氢催化剂被报道后,人们才开始考虑从析氢催化剂入手,降低光催化制氢的成本。早在20世纪70年代,就有关于MoS2催化析氢反应的报道。然而块体的MoS2由于导电性差、活性位点少导致催化性能差,因此之后的很长一段时间,关于MoS2 的析氢反应催化剂都无人问津。直到2005年,Hinnemann等发现MoS2的Mo边界结构与固氮酶的析氢反应活性位点的结构极为相似,可能具有很高的析氢反应催化活性,且这种类石墨烯二维材料具有超高的比表面积和低廉的价格等优点,拥有巨大的商业价值。但是相对于金属铂,MoS2是二维结构的半导体材料,与光催化剂结合时,异质结界面区域较小且电荷传输迟缓,如何通过纳米结构的调控提高MoS2析氢活性是推动这种无铂开路光催化反应的关键。针对这一关键科学问题,张侃教授通过MoS2定向附着生长机制成功制备了非对称与对称MoS2末梢焊接CdS纳米线(tipped structure分别发表于Adv. Func. Mater. 26 (2016) 4527,Nano. Energy. 34 (2017) 481上),在420nm波长下获得了37.6%的量子效率。然而,铂末梢焊接CdS纳米线在光催化制氢反应中的量子效率已经接近100%,因此,就电荷传输效率而言,MoS2跟铂之间仍存在很大的差距。

    成果简介

    近日,南京理工大学张侃教授依托曾海波教授的工信部重点实验室,与美国斯坦福大学,韩国延世大学,韩国成均馆大学,韩国科学研究院展开多方等合作,通过缺陷诱导的外延生长法,成功合成出了[001]取向的MoS2纳米带/[0001]取向的CdS纳米线的共轴异质结构。这种外延的异质结构在420nm下,达到了79.7%的光生氢气的量子效率,并在520nm极限吸收边界下,仍然拥有9.67%的量子效率。结果表明,CdS纳米线表界面的缺陷种类是间隙金属Cd0,并集中在CdS的(110)晶面上。而CdS(110)晶面上的(101)的晶格间距与MoS2(002)晶面的晶格间距匹配度高达99.7%,通过间隙金属Cd,成功形成了共轴,且与轴向成~30°夹角的MoS2纳米带/CdS纳米线的外延结构。通过低损耗的电子能量损失谱,进一步证实了一个不同于CdS和MoS2纳米带的界面组分,随后的密度泛函理论模拟揭示了这种特殊的界面具有金属特性,因此促进了电子在界面的低损耗传输。这一结果为以后新型无珀析氢催化剂在开路光催化制氢反应中的应用打开了一扇窗,并为光催化剂的设计提供了新的思路,相关结果发表在最新一期的Nano Letters上。

相关报告
  • 《吕坚院士团队最新成果:图灵催化剂-开启高性能纳米催化剂设计新风向》

    • 来源专题:先进材料
    • 编译者:李丹
    • 发布时间:2023-11-12
    • 来自材料牛 【导读】 重量能量密度大且清洁的氢气燃料在能源可持续性和减缓全球变暖相关的环保技术革命中起着至关重要的作用。然而,目前约95% 的氢气产量主要通过化石燃料的蒸汽重整供应,过程中会伴随大量的二氧化碳排放。净零碳排放的电解水制氢是最为清洁的一种氢气生产工艺,但其大规模应用受到低效率和高成本(4-11美元/kg)的限制。根据美国能源部的路线图, 到2031年需实现1公斤绿氢的生产成本低于1美元的目标。近年, 随着我国风能与太阳能产能的大幅发展, 由于诸多原因未能上网的弃电数以千亿度记, 利用过剩电力制氢为降低绿氢成本带了新的机遇。阴离子交换膜电解槽制氢是促使达成价格目标的技术路线之一, 而催化剂的效率及稳定性问题一直是该技术的瓶颈。 具有可控缺陷或应变修饰的低维纳米材料是一类用于制备绿氢的高效电催化剂;然而,由于材料自发的结构退化和应变弛豫,稳定性不足导致性能衰退仍然是一个亟待解决的关键问题。本文提出了一种图灵结构化策略,通过引入高密度纳米孪晶来激活和稳定超薄金属纳米片。图灵结构是通过纳米晶粒的约束取向粘附而形成的,它形成了内在稳定的纳米孪晶网络并同时产生了晶格应变效应。将拥有图灵结构的PtNiNb纳米片催化剂应用于析氢反应,孪晶构型和应变效应协同降低了水分解的反应能垒,并优化了反应过程中的氢吸附自由能。与商用 20% Pt/C 相比,图灵PtNiNb纳米催化剂的质量活性和稳定性指数分别提高了 23.5 倍和 3.1 倍。负载图灵PtNiNb催化剂的阴离子交换膜膜电极电解槽(铂载量仅为 0.05 mg cm-2)在工业化条件10000 A m-2 的电流密度下能稳定运行 500 小时以上,展现了卓越的催化稳定性和工业应用的潜力。此外,这一新范式还可扩展到基于 Ir/Pd/Ag 的纳米催化剂体系,从而证明图灵型催化剂的普适性。 【简介】 高活性和高稳定性是电化学催化剂追求的两大关键要素。合成高活性催化剂的有效策略之一是通过引入应变或晶体缺陷来活化低维纳米材料。晶格应变可以通过改变 d 带中心和带宽来优化表面电子结构,从而调整催化剂表面的反应中间体吸附能,提高催化活性。金属催化剂表面的原子构型是决定催化剂性能的另一个关键因素,尤其是晶体缺陷(如孪晶和层错)的表面构型,由于特定的配位结构和缺陷引起了晶格应变,这些表面构型通常是催化反应的活性位点。然而,应变/缺陷驱动的低维纳米催化剂的高表面能和热力学不稳定性往往会诱发应变弛豫、自发表面重构和向无孪晶的Wulff结构转化,从而导致自身结构退化和催化稳定性恶化,难以实现长期稳定催化的目标。这些局限性对低维纳米催化剂的活性和稳定性的设计策略提出新的需求。 低维纳米材料的构建主要集中在以实现功能为目的的结构控制上,很少考虑利用时空控制进行材料调控。图灵图案(图灵斑图)被称为时空静止图案,普遍存在于远离平衡状态的生物和化学系统中,如Dania rero条纹、贝壳上规则的彩色花样以及微乳液中的六边形阵列。这些图案的形成与艾伦·麦席森·图灵(A.M. Turing)提出的反应-扩散理论有关。在图灵理论中,扩散系数较小的激活因子会诱导局部优先生长,从而形成图灵图案。图灵图案常见的可视化形状是六角形排列的圆柱体、斑点样和迷宫图样。这些图灵图案是原始均质系统中自发的对称性破缺部分。在纳米级图灵图案中出现的这种拓扑特征可能是通过纳米晶粒的各向异性生长实现的。这种破缺的晶格对称性对特定构型(如孪晶和具有内在破缺对称性的二维材料)的生长具有重要的晶体学意义。受晶体对称性和形态发生学(morphogenesis)之间相关性的启发,图灵结构可提供一种新的结构模式,用于设计具有应变和缺陷修饰的低维材料。图灵图案中的两个反相和丰富的相边界对于界面主导的应用,尤其是电催化应用具有极大的结构优势。因此,探索图灵理论在纳米催化剂生长中的应用及其与晶体缺陷的关系具有重要的科学意义。 研究团队通过简易的物理气相沉积技术制备得到铂镍铌(PtNiNb)超薄纳米片,这种纳米片呈现出超纳米尺寸(< 10 nm)的图灵结构,可以作为一种高效的电催化剂应用于析氢反应(HER)。图灵条纹是由具有不同取向的纳米晶粒相互约束形成的,在形成过程中的取向粘附导致了高密度的纳米孪晶和较大的晶格应变。图灵结构使得图灵PtNiNb纳米片在碱性析氢反应中具有超长稳定性和较高的质量活性,这些性能指标比商用Pt/C催化剂提高了一个数量级以上。密度泛函理论(DFT)计算证明了孪晶边界和应变的协同效应加速了水分子解离并优化了电子结构和氢吸附自由能。 相关研究成果以题为“Turing structuring with multiple nanotwins to engineer efficient and stable catalysts for hydrogen evolution reaction”发表在顶尖期刊《Nature Communications》上。通讯作者为吕坚院士(香港城市大学)。谷佳伦博士和李兰西博士生为论文共同第一作者。其他作者包括:陈博教授,田夫波教授,谢友能博士生,王艳菊博士,钟景博士生,沈君达博士生。 迄今为止,图灵图案主要在软有机物中观察到。这项研究证明图灵结构可以在纳米级的低维固体材料中生成,并与晶体缺陷工程和应变效应耦合。由于高密度纳米孪晶和显著的晶格应变协效应,图灵二维纳米片具有高电催化活性和稳定性。这可用于指导开发其他电催化材料,推进可再生能源的可持续发展。因此,图灵结构代表了高性能低维纳米催化剂设计的新范例,展示了缺陷调制和应变效应的协同优化可以提高此类材料的稳定性和催化活性。 文献信息:https://www.nature.com/articles/s41467-023-40972-w
  • 《纳米材料前沿研究成果精选:二硫化钼专题》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-04-03
    • 1、Nat. Nanotechnol.:二维MoS2作为Li-S电池锂金属负极保护层 Li-S电池由于其极高的能量密度(~2600Whkg-1)成为有望取代锂离子电池新一代能源装置,但是Li-S电池采用锂金属负极,锂活性太高,反应不稳定,表面容易生成枝晶和不受控制的SEI膜,因此大大降低了电极的库伦效率与循环稳定性。近日,美国北德克萨斯大学Wonbong Choi教授(通讯作者)等人将~10nm的二维 MoS2包覆在锂金属负极外并进行锂化。层状MoS2纳米结构以及其在锂化过程中的相变反应减少了负极材料的界面电阻,实现了包覆层紧密接触和较高的Li+传输效率。同时,MoS2消除了锂枝晶的成核位点,减少了枝晶的形成。因此,这种Li-MoS2作为负极材料构建的全电池测试中,获得了~589 Whkg-1的比能量密度和1200次循环后,在0.5C下~98%的库仑效率。 文献链接:2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li–S batteries (Nat. Nanotechnol., 2018, DOI: 10.1038/s41565-018-0061-y) 2、J. Mater. Chem. A:三明治结构MoS2/S/rGO纳米复合结构作为Li-S电池正极 Li-S电池体系在充放电过程中经历了多步电化学转换过程,其中硫正极会形成长链多硫化锂(Li2Sn,4≤n≤8)中间体。这种具有穿梭效应的中间体和不导电的硫及其放电产物严重限制了Li-S电池的硫利用率和循环寿命,同时,硫向Li2S的转化将引入~80%的体积膨胀,导致电极结构很快失效。因此,华东理工大学的龙东辉教授和凌立成教授(共同通讯作者)等人开发了一种新型MoS2/S/rGO纳米复合结构作为Li-S电池正极。三者具有协同耦合效应,形成具有强大界面相互作用的稳定混合结构,可在循环过程中固定多硫化锂中间体。MoS2作为电催化剂还可加速硫氧化还原反应,因此这种三明治结构具有优异的倍率性能和循环稳定性。这项工作整合了Li-S电池的正极缺陷,化学吸附和电催化概念,为建立多层正极结构提供了新思路。 文献链接:Sulfur film sandwiched between few-layered MoS2 electrocatalysts and conductive reduced graphene oxide as a robust cathode for advanced lithium–sulfur batteries (J. Mater. Chem. A, 2018, DOI: 10.1039/C8TA00222C) 3、Nano Lett.:原位XAS探究MoS2作为锂电池电极材料的反应机理 MoS2由于其类石墨的层状结构作为锂离子的负极材料有大量的研究,但是,MoS2在锂电反应过程中的行为特征并没有详细完整的研究,关于MoS2的锂电反应机理也有较大的争议。因此,近日,美国劳伦斯伯克利国家实验室的Elton J. Cairns和Jinghua Guo(共同通讯作者)等人结合实验和模拟计算完整地揭示了MoS2电极材料的锂电反应机理。锂离子嵌入-嵌出MoS2层状结构是可逆的,使MoS2从2H相转变为1T相,并且伴有少量的锂残余。而之后的转化反应是不可逆的,Li2S在第一次充电时转变为S,无法恢复为MoS2。后续的反应更像Li-S电池的反应特征。该研究完善了MoS2电极的电化学反应机理,有助于MoS2或是其他硫化物在锂离子电池上的设计与应用。 文献链接:Electrochemical Reaction Mechanism of the MoS2 Electrode in a Lithium-Ion Cell Revealed by in Situ and Operando X-ray Absorption Spectroscopy (Nano Lett., 2018, DOI: 10.1021/acs.nanolett.7b05246) 4、ACS Nano:少层MoS2-纳米碳复合材料三维网络结构用于储锂和储钠 近日,福州大学的詹红兵教授和中国科学院福建物构所的温珍海研究员(共同通讯作者)等人在氧化石墨烯和交联而成的中空碳球上原位生长MoS2纳米片构建三维结构复合材料,作为储锂和储钠材料。三维多孔结构的设计缓冲了MoS2材料在循环过程中的体积变化,多通道有利于电解液的扩散和离子的传输,碳材料增强了整个结构的导电性。由于克服了MoS2材料体积变化率大易坍塌,导电性差和易堆叠等问题,整个三维结构复合电极材料表现出良好的电化学性能,其作为锂离子电池的阳极,在0.1Ag-1电流条件下经过100次循环能保持1145mAhg-1可逆容量,在2Ag-1条件下经过1000次循环能保持753mAhg-1可逆容量下。 对于钠离子电池,,在1 Ag-1条件下经500次循环后也可以保持443 mAhg-1的可逆容量。 文献链接:Three-Dimensional Network Architecture with Hybrid Nanocarbon Composites Supporting Few-Layer MoS2 for Lithium and Sodium Storage (ACS Nano, 2018, DOI: 10.1021/acsnano.7b08161) 5、J. Mater. Chem. A:衍生自MOF结构的核壳Co9S8/MoS2-CN纳米复合材料作为钠离子电池阳极材料 过渡族金属硫化物由于其较高的理论容量值常被作为钠离子电池的负极材料进行研究,构建良好的纳米结构和与碳材料形成复合材料是两个提高其性能的主要途径。碳材料可以吸附和捕获多硫化物中间体,阻止穿梭效应,而纳米结构可以承受循环过程中的体积变化,从而延长金属硫化物电极的循环寿命。因此,中国石油大学(华东)的王荣明教授和康文裴博士(共同通讯作者)等人以ZIF-67为前驱体,制备了核壳Co9S8/MoS2-CN纳米复合材料。这种多孔的复合材料促进快速Na+快速嵌入/嵌出,碳材料提高了整体的导电性并捕获多硫化物中间体,产生协同效应。因此,整个材料显示出了优异的钠储存性能。 文献链接:A yolk–shelled Co9S8/MoS2-CN nanocomposite derived from a metal–organic framework as a high performance anode for sodium ion batteries (J. Mater. Chem. A, 2018, DOI: 10.1039/C8TA00493E) 6、J. Mater. Chem. A:分层MoS2/碳微球作为钠离子电池阳极材料 中国香港科技大学的Francesco Ciucci教授和Jang-Kyo KIM教授(共同通讯作者)等人利用简单的水热法合成了一种分层MoS2/碳微球结构,由中间夹有碳层的三明治结构MoS2纳米片组成。三维结构阻碍了MoS2的聚集,碳材料的结合提高了材料的导电性。另外,等级多孔结构增强了表面积,增加了电化学反应的活性位置。 因此MoS2/碳微球电极显示出极高的可逆容量和优异的倍率性能。此外,第一性原理计算表明,与MoS2相比,MoS2/碳异质界面使Na跃迁的能垒更小,带隙更低。这些新型的三维MoS2结构为制造能够实现高倍率性能和长循环寿命的过渡金属硫化合物材料提供了新途径。 文献链接:Hierarchical MoS2/Carbon microspheres as long-life and high-rate anodes for sodium-ion batteries (J. Mater. Chem. A, 2018, DOI: 10.1039/C7TA11119C) 7、Energy Environ. Sci.:MoS2/TiO2异质结构作为非金属等离子体光催化剂用于高效析氢 太阳能制备清洁化学燃料是解决全球环境问题的一个重点。TiO2材料由于其稳定性好、价格低廉等优势已成为太阳光分解水的重要光催化剂。但TiO2为宽禁带半导体,对太阳光吸收效率太低。因此,美国中佛罗里达大学的Yang Yang教授和美国太平洋西北国家实验室的Yingge Du研究员(共同通讯作者)等人结合PVD与CVD的方法将层状MoS2纳米片涂敷在TiO2纳米孔阵列内表面上并将其应用于太阳光分解水制氢中。这种异质结构在UV-vis-NIR范围内显示出强大的光子收集能力,显著提高了H2产出效率。这种非金属等离子体激元异质结构也有望应用于其他2D材料系统,用作高效光催化剂。 文献链接:MoS2/TiO2 heterostructures as nonmetal plasmonic photocatalysts for highly efficient hydrogen evolution (Energy Environ. Sci., 2018, DOI: 10.1039/C7EE02464A) 8、Nano Energy:多活性边缘单层MoS2用于高效析氢 析氢反应是电化学水分解过程中的关键步骤,在实际应用中,需要高效,稳定易得的催化剂。二维层状MoS2由于具有合适的吉布斯自由能可以较容易地吸附氢原子,因此可作为铂基催化剂的替代物。MoS2的析氢活性来自其活性边缘位点,而(002)基底面具有催化惰性。但是直接合成边缘丰富的MoS2纳米片仍然具有挑战性。近日,北京大学的戴伦教授、叶堉研究员和李彦教授(共同通讯作者)等人直接在熔融石英上合成了具有大拉伸应变的分形单层MoS2,其具有大量的活性边缘位点。这是由大拉伸应变引起的,该材料优异的HER催化活性,为将来二维HER催化剂的设计与调控提供了新思路和新方法。 文献链接:Engineering active edge sites of fractal-shaped single-layer MoS2 catalysts for high-efficiency hydrogen evolution (Nano Energy, 2018, DOI: 10.1016/j.nanoen.2018.02.027)