《电工研究所在高性能石墨烯基锂离子电容器研究中取得进展》

  • 来源专题:能源情报网信息监测服务平台
  • 编译者: guokm
  • 发布时间:2022-05-13
  • 近日,电工研究所马衍伟团队联合大连化学物理研究所研究员吴忠帅在高性能石墨烯复合材料制备、石墨烯基锂离子电容器研制方面取得进展。相关研究成果以2D Graphene/MnO Heterostructure with Strongly Stable Interface Enabling High-Performance Flexible Solid-state Lithium-Ion Capacitors为题,发表在《先进功能材料》(Adv. Funct. Mater., 2022, 2202342)上。

      锂离子电容器作为一种有效结合锂离子电池与超级电容器的新型电化学储能器件,具有高功率密度、高能量密度以及长循环寿命,有效弥补了锂离子电池和超级电容器之间的性能差异。电极材料作为锂离子电容器的重要组成部分,是影响锂离子电容器性能的关键因素。

      精细的结构设计工程被认为是提高电极材料电化学性能的有效方式之一。马衍伟团队提出了一种通用静电自组装策略,在还原氧化石墨烯上原位生长了具有卷心菜结构的MnO复合纳米材料(rGO/MnO)。通过深入的原位实验表征以及理论计算,证实了rGO/MnO异质结构具有较强的界面作用和良好的储锂动力学。由于rGO/MnO复合纳米材料具有高电荷转移速率、丰富的反应位点以及稳定的异质结构,基于rGO/MnO复合纳米材料制备的电极具有高比容量(0.1 A/g电流密度下比容量为860 mAh/g)、优异的倍率性能(10 A/g下比容量为211 mAh/g)以及长循环稳定性。因此rGO/MnO复合纳米材料可作为高性能锂离子电容器理想的负极材料。

      通过将这种高性能石墨烯基复合材料作为负极与活性炭正极进行组装,马衍伟团队成功制备出柔性固态锂离子电容器(AC//rGO/MnO)。经测试,这一电容器基于电极活性材料总质量的能量密度最高达到194 Wh/kg,功率密度最高可达40.7 kW/kg。这是迄今为止报道柔性固态锂离子电容器能量密度和功率密度的最高值。此外,在10000次充放电循环后,AC//rGO/MnO电容器的容量保持率可达77.8%,并且安全性能高。

      科研团队表示,这一研究提出的金属氧化物/石墨烯复合材料设计策略在高能量密度和高功率密度的柔性锂离子电容器中具有很好的应用前景。

      该研究工作得到国家自然科学基金、中国科学院大连洁净能源研究院合作基金、中国科学院青年促进会等的支持。

相关报告
  • 《电工研究所在锂离子电容器负极预嵌锂技术方面取得重要进展》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2019-11-26
    •  日前,电工研究所超导与能源新材料研究部马衍伟团队在锂离子电容器负极预嵌锂技术方面取得重要进展,相关研究结果发表于材料类顶级期刊Energy Storage Materials (DOI: https://doi.org/10.1016/ j.ensm.2019.08.023),并申请了国家发明专利。   锂离子电容器是一种介于超级电容器和锂离子电池之间的新型储能器件,具有高能量密度、高功率密度、可快速充放电、长循环寿命和安全性能好等优点,在轨道交通、电动汽车、新能源发电、航空航天和国防军事等领域有着广泛的应用前景。   负极预嵌锂是制备高性能锂离子电容器的关键技术之一。研究创新性提出了以高比容量Li3N作为锂离子电容器的预嵌锂剂,首次采用干法工艺制备出活性炭与Li3N复合正极,与软碳材料负极组装成软包装锂离子电容器。Li3N在首周充电后完全分解为Li+和N2,Li+进入负极完成预嵌锂过程,N2通过二次封口工艺排除,不残留非电化学活性物质。基于电极材料的能量密度达到74.7Wh/kg,功率密度达到12.9kW/kg,且循环10000周后容量保持率为91%。该方法操作工艺简单、效率高,易于实现锂离子电容器的规模化制备。   研究团队近年来在锂离子电容器规模化制备以及应用示范方面开展了大量的研究工作,取得了一系列的研究成果。在11月举办的“2019超级电容产业年会”上,其研究成果“我国自主研发的全碳型锂离子超级电容器实现装车示范运行”被中国超级电容产业联盟评选为“2019中国超级电容产业十大事件之一”。
  • 《石墨烯基电化学电容器储能研究取得重要进展》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2020-03-06
    •  电化学电容器具有可快速充电、功率高、循环寿命长、工作温度范围宽、安全性能高等优点,可用作大功率电源,在混合电动汽车、备用电源、便携式电子设备等领域都具有广阔的发展前景。然而电化学电容器相比于电池其能量密度较低,即单位体积内储存的能量低,限制了其更广泛的应用范围,尤其是在便携式智能设备中的应用, 需要进一步提高体积能量密度。近日,中国科学院金属研究所与英国伦敦大学学院及香港大学合作,在《自然-能源》(Nature Energy)在线发表题为“可调层间距、高效孔利用石墨烯薄膜的电化学电容储能研究”的研究论文。   研究人员制备了不同比例的氧化石墨烯和热膨胀还原石墨烯的混合溶液,经过真空抽滤,得到片层间距可调节的复合石墨烯基薄膜。通过调控片层间距,实现了优化整个电极材料孔隙率的效果。当电极材料的孔隙尺寸与电解液的离子尺寸相匹配时,孔隙的空间利用达到了最优化,从而极大化了体积能量密度。在此基础上,科研人员设计了全固态柔性电化学电容器,石墨烯薄膜电极材料本身良好的弯折性能,保证了整个器件的柔性,并进一步发展了智能器件,通过根据实际需求改变电路连接方式,实现了不同的输出效果。   该合作研究的实验工作由英国伦敦大学学院李庄男博士在中国科学院金属所合作研究完成, 所有作者共同参与了数据分析、讨论及论文撰写工作。李庄男博士为第一作者,李峰研究员、Ivan Parkin教授、郭正晓教授为共同通讯作者。该研究工作得到了国家自然科学基金、国家重点研发计划、中国科学院、英国工程物理研究委员会、香港大学浙江研究院等项目资助。