《突破 | 5.5G已取得三大关键进展》

  • 来源专题:光电情报网信息监测服务平台
  • 编译者: husisi
  • 发布时间:2022-10-28
  • 10月26日消息,华为常务董事、ICT基础设施业务管理委员会主任汪涛,在2022全球移动宽带论坛上,发表了题为“迈向5.5G,共筑未来之基”的主题演讲。汪涛指出,5.5G已经取得了三大关键进展,5.5G已经进入了新的阶段。汪涛倡议产业界共同做好全方位的准备,加速迈向5.5G。
    汪涛指出,经过两年产业界的共同探索和努力,5.5G已经取得了三大关键进展:首先,标准节奏明确,5.5G已经开启标准化的进程,持续丰富5.5G的技术内涵,已经从愿景走向共识;其次,关键技术取得突破,超大带宽和超大规模天线阵列已验证万兆能力;第三,物联全景清晰,5.5G所支持的NB-IoT、RedCap和Passive IoT三类物联技术跨步向前,已具备收编所有物联的能力。
    汪涛表示:“通信产业的巨轮滚滚向前,5.5G已经进入新的阶段。面向未来,我们倡议产业界在标准、频谱、产业链、生态和应用五个方面共同做好准备,加速迈向5.5G。”
    第一,做好标准准备,共同推动关键技术研究
    标准是无线通信产业的龙头,将牵引5.5G产业沿着清晰的路线发展。R18版本需兑现5.5G十倍能力提升的目标,实现2024年如期冻结;R19及以后版本,共同探索新业务和新场景能力要求,持续完备5.5G标准技术,实现5.5G更长的生命周期和更强的生命力。
    第二,做好频谱准备,共同构筑超大带宽频谱
    充分利用好Sub100GHz的频谱资源,为5.5G提供资源保障。毫米波是5.5G的关键频谱,运营商需要获得800MHz以上频谱兑现10Gbps能力;6GHz是潜在的超大带宽新频谱,各个国家需考虑在WRC-23标识后开始发放6GHz频谱;对于Sub6GHz的频谱,通过频谱重构也可以实现超大带宽。
    第三,做好产品准备,共同催熟端管芯产业链
    5.5G网络和终端要做好能力匹配。充分释放万兆能力。中高频产品需要超过1000阵子的ELAA技术,M-MIMO的通道数也需要走向128T,提供万兆网络能力;5.5G芯片和智能终端需走向3T8R甚至更多通道,并支持4个载波以上的载波聚合,打造万兆体验终端。
    第四,做好生态准备,共同促进5.5G生态繁荣
    产业界需深度合作促进5.5G生态繁荣,更好地服务全场景数字化需求。以物联生态为例,运营商和设备商要面向物联场景规划网络,兼顾人和物的需求;终端厂商的模组能力和成本要适配应用场景,行业和应用开发者要提前孵化应用。
    第五,做好应用准备,共同创新跨时代应用
    5.5G正加速从共识走进现实,为百花齐放的应用发展提供肥沃的土壤。全感官互动改变我们的沟通方式,实现跨时代的沟通体验;汽车走向泛在的智能网联,实现跨时代的出行体验;行业从信息孤岛走向智能联接,实现跨时代的行业升级。越来越多的创新应用将逐步勾勒出智能世界的全貌,产业界上下游需共同探索跨时代的新应用。

相关报告
  • 《大电网调控平台关键技术获突破》

    • 来源专题:能源情报网监测服务平台
    • 编译者:郭楷模
    • 发布时间:2024-11-19
    • 11月15日,记者从中国电力科学研究院有限公司(以下简称“中国电科院”)获悉,由该院牵头完成的“‘物理分布、逻辑统一’的大电网调控平台关键技术及应用”项目,获2024年度电力科学技术进步奖一等奖。该成果将为保障大电网安全稳定运行提供强有力的技术支撑。 大电网是现代经济社会发展的基石。随着我国特高压交直流混联大电网加快建设,电网规模不断扩大,一体化运行特性突出,电力平衡和安全保障难度不断加大。原有调控系统由各级调度独立建设,难以满足一体化发展需求,电网调控支撑能力面临挑战。 中国电科院电力自动化研究所研究员级高级工程师杨胜春说,电网规模的扩大,要求电网必须提高全局态势同步感知能力,源荷新特征要求提升大电网全局平衡能力。同时,局部故障将对大电网安全产生连锁影响,迫切要求加强跨区一体化安全防控能力。 为此,中国电科院联合南瑞集团、浙江大学、国网江苏省电力有限公司等多家单位组成专项团队,攻克大电网调控多项关键技术,成功构建起“物理分布、逻辑统一”的大电网调控平台,使各项关键技术指标得到数量级提升。通过信息立体感知、资源全网优化、风险全局防控三大功能,平台有效提升了新能源消纳能力,降低了负荷峰谷差。尤其在风险防控方面,平台基于全网信息实现了超前评估和预控策略制定,大幅提升了电网安全保障水平。 据介绍,这一平台整合了分散于各调控中心的分析和决策功能,通过一体化系统架构提升了电网的监控、优化调度和风险防控能力。这就好比给大电网装上了“高清监控”,电网运行得怎么样、哪里有问题,一看便知。 杨胜春进一步解释,这一平台还能让电网自己“思考”和“调整”。以前,如果电网出了问题,需要人工查找并修复,但现在电网不仅可以自己发现问题,还能采取措施防止问题变得更严重。 据悉,该成果目前已在国家电网实际应用中取得显著成效,推动新一代调度自动化系统升级。
  • 《突破 | 中国科大在铌酸锂高频声波器件领域取得重要进展》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2023-07-12
    • 近日,中国科大微电子学院左成杰教授课题组两篇论文入选2023年国际微波会议(IMS,全称为:IEEE International Microwave Symposium)。IEEE IMS是国际微波领域的全球著名学术会议,IMS 2023于6月11日至16日在美国San Diego举办,今年在微波声学方向总共只收录了六篇Oral论文,其中包括中国科大的两篇。 随着无线通信从5G向Beyond 5G (B5G)和6G发展,有些国家已经将6 GHz全频段授权用于Wi-Fi 7,而更多的国家在考虑将此频段部分用于蜂窝无线通信(5.5G或者6G)。因此,源于对不同制式和频段间信号的隔离需求,工作在6 GHz的高品质因数(Q值)声波谐振器以及高性能滤波器将会成为下一阶段无线通信发展的关键技术。另一方面,Sub-7 GHz频段的大规模使用(包括6G、Wi-Fi 7、UWB等)将会导致频带越发地拥挤,所以针对更高频率(甚至毫米波频段)的无线通信技术的布局与探索也显得至关重要。因此,6 GHz及以上的高频、高性能声波谐振器和滤波器都是我国6G以及Wi-Fi产业发展必须要自主可控的基础元器件和核心芯片技术。该课题组针对上述战略需求做了以下两项工作: 1、高滚降无杂散S1模态高频声波滤波器 针对6 GHz频段的滤波器,该课题组前期实现了一阶对称兰姆波(简称S1模态)谐振器Q值的突破(Zhongbin Dai, et al., IEEE Electron Device Letters, vol. 43, no. 7, 2022),但由于这一模态的寄生振动复杂,在滤波器设计中使用S1模态谐振器仍然存在很大的挑战。杂散振动不仅会导致滤波器带内纹波大,还会恶化插入损耗。因此,基于已有谐振器的高Q值特性,抑制S1模态的杂散振动,是实现高滚降滤波器的有效方案。 该课题组研究了基于X切向的铌酸锂压电薄膜中S1模态的传播特性,分析了杂散模态产生的原因,研究了自由压电区域和金属覆盖区域对于杂散模态振动频率和振动幅度的影响,选取了最佳的金属间距和电极宽度,成功制备出了无杂散的S1模态高频声波谐振器。该研究采用一阶T型拓扑结构的滤波器电路,能够最大化地利用S1模态的高Q值特性,从而获得最陡峭的滚降。最终测试结果表明,滤波器中的串联谐振器的工作频率在6.4 GHz附近,带内杂散模态被抑制,具有989的品质因数(Q值)和3.3%的机电耦合系数(k2)。基于带内无杂散的S1模态谐振器,所制备的滤波器测试结果表明,中心频率为6.4 GHz,插入损耗为2.6 dB,带内纹波小于0.5 dB,带外抑制点深度为40 dB。在通带右侧,基于谐振器高达989的Qp,滤波器在55 MHz的过渡带内实现了从插入损耗2.6 dB到40 dB带外抑制的陡峭滚降。这是国际上首次实现基于S1模态的6 GHz声波滤波器,其性能证明了谐振器高Q值对于高频滤波器设计的重要性。研究成果以“A 6.4-GHz Spurious-Free Acoustic Filter based on Lithium Niobate S1-Mode Resonator”为题发表在IMS 2023上,第一作者为我校微电子学院硕士生刘雪彦,微电子学院左成杰教授为论文的通讯作者。 图1、S1高频无杂散声波器件 (a)谐振器截面示意图,(b)谐振器SEM图像,(c)谐振器测试导纳曲线,(d)测试所得滤波器传输特性 2、高机电耦合系数超高频声波谐振器 当前,提高超高频(> 20 GHz)声波谐振器的性能仍然存在很大的挑战,频率提高带来的更大损耗导致谐振器难以实现高Q值;同时,更高的谐振频率要求压电薄膜更薄,这会导致器件的鲁棒性降低。因此,寻找新的振动模态,以及革新压电薄膜的衬底结构都是业界追逐的焦点。 该课题组基于Y128°切向的铌酸锂压电薄膜中第三阶反对称兰姆波(简称A3模态)的传播特性,选取了最佳的电极排布方向,并优化了薄膜的刻蚀工艺,成功制备出高机电耦合系数(k2)的超高频声波谐振器。该研究采用了X方向的电极排布,能够最大化地激发铌酸锂薄膜中的A3模态,从而获得最大的机电耦合系数。刻蚀工艺的优化能够使谐振器的侧边具有更好的垂直度,从而能有效反射声波能量回到谐振器体内,进而提升谐振器Q值。最终测试结果表明该器件的工作频率在20.4 GHz附近,具有461的品质因数(Q值)和6.95%的机电耦合系数(k2),表现出良好的器件优值(FoM = Q·k2 = 32),这是当前已报道的工作在该频段的最大谐振器优值。研究成果以“A 20.4-GHz Lithium Niobate A3-Mode Resonator with High Electromechanical Coupling of 6.95%”为题发表在IMS 2023上。第一作者为我校微电子学院博士生林福宏,微电子学院左成杰教授为论文的通讯作者。 图2、A3超高频高耦合声波谐振器 (a)谐振器SEM图像,(b)谐振器测试导纳曲线