《合成生物学、基因编辑与生物恐怖主义结合的危险 》

  • 来源专题:转基因生物新品种培育
  • 编译者: Zhao
  • 发布时间:2017-02-28
  • 合成生物学作为多学科的交叉型研究发展迅猛,其特点在于将工程目的的建模和构筑应用于生物学领域。欧盟虽存在一些涉及合成生物科研和商业使用的准则条款,但尚未形成专门针对合成生物学的法律法规。值得注意的是,合成生物学中的大多数研究分支都隶属于基因技术立法的监管范畴,主要是欧盟2009年颁布的《关于转基因微生物的控制使用指令》(2009/41/EC)和2001年颁布的《关于转基因生物向环境有意释放的2001/18/EC指令和废止90/220/EEC指令》。

    合成生物学的生物安保问题实质在于,如何防范以恶意目的利用合成生物学设计、构造并使用合成病原体的风险,对此必须提供针对性的监管和规制。研究者对此前的相关文献进行梳理和总结,针对欧洲当前生物安保形势提出全新的观点和主张,并提出三个重要问题:

    首先,合成生物学和基因编辑技术的发展导致生物安保的风险持续增加,具体表现在:①合成生物学专业技术的传播与普及性更强;②合成生物学的技术、工具和制剂可获得性更加便捷;③合成生物学导致诸如对曾经被消灭的致病性病毒进行“复活”等新技术的可能性在增加。

    第二,大多数合成生物学领域的分支都隶属于基因技术立法的监管范畴,欧盟缺少专门针对合成生物学的法律法规,直接导致了欧盟内部(欧盟新兴和新发现健康风险科学委员会、欧盟健康和环境风险科学委员会以及欧盟消费者安全科学委员会)制订具体监管措施的不一致,当前所实施的审查重点错误地放在了合成生物学的生物安全,即如何避免非主观误用合成生物技术而造成伤害之上,而非针对合成生物学的生物安保进行审查与监管。

    第三,尽管合成生物学的伦理问题已经被广泛讨论,但随着生物恐怖主义的抬头,对于生物安保政策的重新考量迫在眉睫。当前最为紧迫任务是,对非国家行为体合成生物技术谬用的危害进行量化评估以及有效监管。

  • 原文来源:http://10.200.32.179:90/om/hotnews/detailnew.jsp?sid=740970&hkeyBbsnum=1232456638343064921-0&urltime=2017.02.27+00%3A00%3A00&sectionid=87&groupname=&channelId=
相关报告
  • 《合成生物学:生命科学的“利器”》

    • 来源专题:转基因生物新品种培育
    • 编译者:王晶静
    • 发布时间:2020-11-26
    • 人类进入21世纪以来,一门新兴的交叉学科“合成生物学”成为国际科学前沿一大热门。合成生物学,能利用大肠杆菌生产大宗化工材料,摆脱石油原料的束缚;酵母菌生产青蒿酸和稀有人参皂苷,降低成本,促进新药研发;工程菌不“误伤”正常细胞,专一攻击癌细胞;创制载有人工基因组的“人造细胞”,探究生命进化之路;利用DNA储存数据信息并开发生物计算机……作为科学界的新生力量,合成生物学进展迅速,并已在化工、能源、材料、农业、医药、环境和健康等领域展现出广阔的应用前景。 探究生命起源演化 解读“密码”改造自然 生命是世界上最复杂的物质存在。人类自诞生以来,就在认识生命的漫漫长途中上下求索。从中国古代的《黄帝内经》和《本草纲目》,到西方近代博物学家对动植物分类,人类对于生命现象的认识,都是从对生命体的“宏观”观察、“表观”描述而获得的经验型逻辑总结。另一方面,对于譬如尿素之类的“有机物”,化学家们也认为只能由生物体在一种神秘的“生命力”作用下产生。 1828年,德国化学家弗里德里希·维勒无意在无机实验中合成了尿素,揭开了人工合成有机物的“合成化学”序幕。也就是从19世纪后期到20世纪前半叶,基于数理化技术与方法的实验科学催生了认识生命共同本质的细胞生物学、生物化学、遗传学和发育生物学,而进化论的诞生,则最先将人类对生命的认识,提升到了理论的高度。 20世纪中叶,随着DNA双螺旋结构的发现,分子生物学“中心法则”的确立,人类开始找到生命现象的“密码本”。而生命另一类基本分子,具有生理活性的蛋白质牛胰岛素一级结构的解析,直接导致了我国科学家于60年代完成其全人工合成,即世界上首次人工合成蛋白质。在同一时代,DNA测序技术的建立,实现了人类“读基因”的梦想;DNA重组技术的建立,实现了人类“写基因”的梦想;再加上在基因定向突变与敲除基础上的“编基因”梦想的实现,分子生物学及基因工程技术在上世纪80年代,将生命科学推向了历史上第一次革命的顶峰。 至20世纪末,人类基因组计划带来了第二次革命,实现了基因组的全面“解读”,人类对生物体组成和生命规律的认识达到了前所未有的系统生物学的深度和定量生物学的精度。2010年,科学家合成约100万碱基的支原体基因组,并将其转入另一种支原体细胞中,获得可正常生长和分裂的“人造生命”,实现了“撰写”基因组的梦想。此后,科学家又合成了非天然核苷酸、非天然氨基酸;并采用“编辑”基因组的手段,创建出人造单染色体真核细胞……人类掌握了“读”“写”“编”基因组的技术手段,获得了设计与合成生命的能力,200年前盛行于世的“生命力”学说被完全克服。 什么是合成生物学? 有什么样的认识(科学)和手段(技术)就有什么样的工程。古代,通过“尝百草”检验植物药性,建立中药体系,通过人工驯化与优选,获取种质资源,建立畜牧业与农业体系,都是利用当时的生物认识和生物技术,造福人类的典型工程实践。今天,怎样利用对生命“密码本”的认识及对其“编写”的手段,改造自然、造福人类?21世纪初, 科学家们将工程科学的研究理念融入现代生命科学,发展出以合成生物学为代表的“会聚”研究,促成了生命科学的第三次革命。 合成生物学采用工程学“自下而上”的理念,打破“自然”和“非自然”的界限,从系统表征自然界具有催化调控等功能的生物大分子,使其成为标准化“元件”,到创建“模块”“线路”等全新生物部件与细胞“底盘”,构建有各类用途的人造生命系统。这一与系统生物学“自上而下”解析理念相反的合成理念,也将我们习以为常的“格物致知”研究策略,推进到了“建物致知”的新高度。这样,进化过程中“猜测”的祖先物种或分子体系,将可能被合成,并加以定向的诠释;而被各种“假说”“对照”分割研究的复杂生命现象,也可以实现整合的定量研究,解析因果机制。 合成生物学采用工程学“设计—合成—测试”的研究方法,在学习抽象自然生命系统的基础上,或对自然生物系统“重编程”,或重头设计具有全新特征的人工生命体系;然后,利用“基因编辑”“基因合成”等“工具包”,用实验方法来构建,再对构建出来的生物系统进行测试,如此反复循环优化,形成了一个正向可靠的科学闭环。建筑在如此大规模通用化工程平台基础上的合成生物学,往往也被称为“工程生物学”,它“建物致用”的工程能力,有望为解决健康、能源、粮食、环境等重大问题做出新贡献。 破解资源环境难题 赋能人类健康事业 当前,资源短缺、环境污染、气候变化等全球问题日益凸显,合成生物技术为实现“社会—生态/环境—经济”和谐发展提供了全新解决方案。 石油是储量有限的不可再生资源,迟早有枯竭的一天,这是人类生存发展必须严肃应对的问题。在理论上,绝大多数石油化学品都能够借助合成生物学技术制得,人们还可通过生物合成技术制造出传统化工无法合成的新燃料。同时,合成生物学在人工固碳、利用二氧化碳方面取得进展。例如,科学家通过对细菌进行人工优化和改造,建造可将大气中的二氧化碳转化为酮、醇、酸等化学品的“细胞工厂”,实现二氧化碳等资源的高效综合利用,推动建立低能耗、低污染、低排放的低碳经济模式。 随着全球人口不断增长,环境污染加剧和气候持续变化,人类食品和环境安全面临巨大挑战。利用合成生物学技术,创建适用于食品工业的细胞工厂,将可再生原料转化为重要食品组分,这被认为是解决食品问题的可行途径。在农业生产中,氮肥使用量大幅增加带来的土壤板结和酸化等问题,可以通过合成生物学“微生物固氮”技术得以有效解决。在环境治理领域,可以通过“定制”微生物去除难降解的有机污染物,也可开发出人工合成的微生物传感器,帮助人类监测环境,设计构建能够识别和富集土壤或水中的镉、汞、砷等重金属污染物的微生物,以大幅提升污染治理效能。 合成生物学在生命健康领域也有广阔的用途,不仅能够用于天然产物等医药产品的生产,还能在疾病研究模型的开发、生物标志物监测、干细胞与再生医学等领域发挥巨大作用。例如,人体肠道内具有丰富多样的微生物,合成生物学为肠道微生物的改造提供了工具:一方面,可以设计改造对人体有益的细菌,让它们生产人体自身不能合成的维生素等营养物质;另一方面,可以设计出感知肠道环境变化的“智能微生物”,对人体内的健康状态进行检测和诊断。 在抗击新冠肺炎疫情中,合成生物学技术发挥了重要作用,展现了强大应用潜力。例如,利用DNA条形码技术改进测序流程、利用基因编辑技术开发核酸诊断试剂,提高诊断的准确性和灵敏度。利用合成生物学技术还可以寻找潜在的小分子药物、开发疫苗,以及通过调节人体微生物组来激活人体免疫系统,提高人体抗病毒能力。 改造生命的目的,是为了更好地认识和调控生命现象,使之为改善生态、提高人类生命生活质量服务。未来,在人工智能和大数据等新技术推动下,合成生物学将赋予人类更强的“改造自然,利用自然”的能力,当然,同时也会带来社会伦理与安全等新问题。我们必须在思想上明确该做什么,怎么做才是正确的;在做好风险评估并开发防控风险的技术和策略的同时,及时制定相应的研究规范、伦理指导原则和相应的法律、法规,并辅以可落实的管理规章与监管办法。 人类数百万年对于生命的探索,经过最近两个多世纪的三次革命,才达到了“合成生物学”的高度,形成了工程化的能力。然而,这只是“万里长征第一步”。用好合成生物学的“利器”,为实现建设社会主义现代化强国的理想作出贡献,还需要投入大量心血,提升知识、创新技术、踏实转化、服务需求。中国科学工作者对此责无旁贷。 (作者为中国科学院院士、中国科学院合成生物学重点实验室专家委员会主任)
  • 《Op/ed:合成生物学与责任新文化》

    • 来源专题:人类遗传资源和特殊生物资源流失
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2018-12-10
    • 美国科学家联合会(FAS)的Ali Nouri博士和文明企业的Shahram Seyedin-Noor博士 1980年,世界卫生组织宣布正式消灭天花,这是现代医学最辉煌的成就之一。据估计,天花病毒在20世纪已导致3亿多人死亡。这是包括第一次世界大战和第二次世界大战在内的同一时期所有战争死亡人数总和的三倍。 今天,科学家们掌握了使天花起死回生的工具。(1975年诺贝尔生理学或医学奖(Nobel Prize in physiology or medicine)得主戴维·巴尔的摩(David Baltimore)说,“发表了天花病毒序列,所以如果你有实验室设备,你可以通过合成来修复它。”) 事实上,他们已经用其他几种病毒做到了这一点。去年,加拿大研究人员利用邮购DNA以10万美元的价格重组了“灭绝”的马痘病毒,它是天花的近亲。在这一实验之前,还有其他类似的实验,包括2002年小得多的脊髓灰质炎病毒的组装,以及2005年H1N1大流行病毒(也被称为“西班牙流感”)的复活。一个世纪前,H1N1大流行病毒夺去了5000万人的生命。在这些科学里程碑和对医疗保健、环境友好型制造等诸多领域的其他贡献背后,是一个被称为合成生物学的领域——而且它正在加速发展。 合成生物学,或称synbio,结合了工程和生物学的原理,生产用于农业、医疗保健、食品、材料等领域的产品。在10月的第一周,在加州旧金山举行的SynBioBeta 2018大会上,来自世界各地的科学家、工程师、企业家、决策者和风险投资家展示并讨论了synbio的最新进展。这些最前沿的创新包括在DNA分子中存储数字信息(0和1),重新设计臭名昭著的沙门氏菌,使其成为疫苗传递的来源,重新连接细菌的遗传电路,制造能够检测环境污染物的生物传感器。 在synbio社区中,我们将生物技术的巨大力量视为一股美好的力量。但合成生物学也带来了需要管理的风险。其中一个危险来自生物技术的双重用途应用- -这种技术可能被转用于制造毒素和病原体作为生物武器。随着合成生物学的基石变得更加分散,或“民主化”,这些工具被怀有恶意的个人滥用的风险也随之上升。 考虑DNA合成技术。利用化学前体高效、廉价地构建长DNA分子的能力,对synbio初创公司和大学里的科学家们来说是一个巨大的好处,他们现在可以把这项繁琐的任务外包给集中的设施。但这也为一种可能性打开了大门,即一个怀有邪恶意图的人可能会订购属于毒素和病原体的基因。一旦获得,这些基因可以被导入细胞或无细胞提取物,在那里它们可以被转录,然后转化成毒素,甚至是致病病毒。 为了应对这种风险,DNA合成公司在国际基因合成联盟(IGSC)的旗帜下进行了谨慎的自我监管。2009年,IGSC开始筛选客户的身份,以及长度超过200个碱基对的任何双链DNA分子订单。其目的是确保属于毒素和病原体清单的DNA序列只提供给被特别授权与这些制剂合作的研究人员。 这一框架是近10年前实施的,今天仍然有效。然而,它并非没有缺点。筛选短寡核苷酸存在技术挑战,短寡核苷酸可用于构建更大的DNA分子。此外,IGSC的成员仅占基因合成市场的80%,这就留下了一个漏洞,一个坏家伙可能会利用这个漏洞。 虽然这个框架在很大程度上是静态的,但技术却不是。随着synbio的加速,风险也在增加。例如,公司正在努力构建桌面基因合成器,可以卖给实验室甚至个人。这将需要一个不同于目前集中式DNA工厂的风险缓解框架。其他公司正在努力创造新的平台来产生分子和改良的生物体来治疗疾病。这些技术也可以用来制造新的毒素和致病菌。再加上机器人自动化的趋势、软件和计算机辅助生物设计(Bio-CAD)以及人工智能方面的新进展,很明显,即使是没有经过正规科学训练的新手,最终也可能会使用这些工具,不管它们是好是坏。 从这里我们要去哪里? 显然,确保合成生物学共同体的工具不被用于或试图用于邪恶的目的是符合其利益的。这两种情况都可能引发严重的政府监管,从而阻碍该行业的创新和增长。 该行业作为一个整体,有机会建立在最初的自我调节模型的基础上,这一模型已被几家领先的基因合成公司采用。正在开发新技术的科学家和工程师处于有利地位,能够通过量身定制的技术和制度保障措施来防止滥用(阿里·努里(Ali Nouri)博士是约翰霍普金斯大学卫生安全中心(Center for Health Security)与SynBioBeta 2018联合举办的生物安全和合成生物学会议研究金的研究员)。它们应该与政策界建立桥梁,评估风险,制定拟议的指导方针,并以促进而不是阻碍进一步创新的方式实施这些方针。 就商业企业而言,包括初创企业和资助它们的私人风险投资家在内的商业企业,也可以采取一种积极警惕的文化,将识别和减轻风险列为优先事项。马克•扎克伯格(Mark Zuckerberg)普及的“快速行动,打破陈规”(move fast and break things)箴言,帮助推动了创新,但也带来了新的风险。从俄罗斯最近对美国选举的干预可以看出,即使是像社交媒体这样看似无害的技术,如果没有有效的保护措施,也可能具有破坏性的“双重用途”。就合成生物学而言,滥用的可能性和降低风险的必要性更加明显。 基因合成公司已经证明,学术界、商界和政策界可以在一个动态的框架内共同努力,抵御风险。该框架倡导过程透明、开放渠道、跨学科合作和行业标准,这些标准必须得到普遍采用,才能真正有效。合成生物学的双重用途并非独一无二;人工智能、增材制造和其他新兴领域都带来了巨大的利益和风险。 通过建立并超越现有的DNA合成风险缓解框架,synbio社区可以为其他部门树立一个强大的榜样。 ——文章发布于2018年10月22日