《非视觉阻遏蛋白与GPCR复合物的三维结构成功获解析》

  • 来源专题:生物安全知识资源中心 | 领域情报网
  • 编译者: hujm
  • 发布时间:2019-12-09
  • 近日,中国科学院上海药物研究所徐华强课题组、余学奎课题组和上海生化与细胞所国家蛋白质科学中心(上海)丛尧课题组合作在GPCR跨膜信号转导领域取得重大进展——首次解析了非视觉阻遏蛋白(Arrestin2)与神经降压素受体(NTSR1)复合物冷冻电镜结构,阐述了非视觉阻遏蛋白偶联多种不同特征GPCR进行信号整合的作用机制。该研究成果于2019年11月27日在线发表于国际知名学术期刊Cell Research杂志。这是徐华强团队继发表在2015年《自然》(Nature)杂志和2017年《细胞》(Cell)杂志里程碑式研究后,在该领域的又一重要突破,为基于GPCR结构的偏爱性配体的功能研究和设计优化提供了重要的依据。

      GPCR作为人体最大的细胞膜受体蛋白家族,包含800多个成员,是超过三分之一的临床及在研药物的作用靶标。GPCR主要通过偶联下游G蛋白和阻遏蛋白进行信号传导。阻遏蛋白包括视觉阻遏蛋白(Arrestin1和4)和非视觉阻遏蛋白(Arrestin2和3)。视觉阻遏蛋白主要转导视紫红质受体信号通路,早在2015年,徐华强团队利用世界最强的X射线自由电子激光技术得到了高分辨率的Arrestin1-视紫红质复合物晶体结构。该三维结构第一次展现了阻遏蛋白与GPCR的结合模式,与G-蛋白与GPCR相互作用截然不同,为深入理解GPCR下游信号转导通路奠定了重要基础。而非视觉阻遏蛋白则参与调控其它800多个GPCR下游信号通路,不仅阻断受体与G蛋白的结合,还介导受体的内吞及一系列非G蛋白依赖的信号通路。非视觉阻遏蛋白与GPCR复合物的结构研究一直都是GPCR领域的重点。然而,非视觉阻遏蛋白与GPCR的相互作用较弱,且组装的复合物具有高度的柔性,从而给结构解析带来了很大挑战。

      徐华强团队经过多轮筛选,确定了以NTSR1为模式受体,并历经8年的努力系统探究了增强Arrestin2和NTSR1相互作用及提高复合物稳定性的各种因素,包括阻遏蛋白3A突变体的引入、正向别构激动剂ML314与内源性配体NTS的联合使用、构象稳定抗体片段Fab30的辅助,复合物的融合表达、GRK的共表达促进受体磷酸化以及去垢剂的筛选等。该研究最终获得了较为稳定的Arrestin2-NTSR1复合物,并解析了其冷冻电镜结构。该结构与课题组已报导的Arrestin1-视紫红质复合物结构具有类似的结合方式,但其中Arrestin2相比于Arrestin1有90°旋转的构象差异,使得受体的TM5、TM6和ICL3处于Arrestin2中N端结构域的前面方位,这种构象更有利于部分受体采用ICL3取代受体C端招募Arrestin2,可作为探讨非视觉阻遏蛋白与GPCR相互作用的第二种模型。

      徐华强课题组博士后尹万超和博士研究生殷裕玲、余学奎课题组博士后李智海和中国科学院上海生化与细胞所国家蛋白质科学中心(上海)丛尧课题组金明梁博士为该论文的共同第一作者。此研究的合作单位还有美国文安德研究所(Van Andel Research Institute)、浙江大学和哈尔滨工业大学。该研究得到了国家科学技术部、国家自然科学基金委员会、中国科学院重大科技基础设施开放研究项目、上海市科学技术委员会、美国国立卫生研究院等项目的资助。

  • 原文来源:http://www.simm.ac.cn/xwzx/kydt/201912/t20191204_5448983.html
相关报告
  • 《Nat Commun | 上海药物所合作解析人源松弛素/胰岛素样肽受体4复合物三维结构》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2023-02-03
    •  人源松弛素/胰岛素样肽受体4(Relaxin family peptide receptor 4, RXFP4)为A类G蛋白偶联受体(G protein-coupled receptor, GPCR),2003年首见于人类基因组数据库,2005年被证实为胰岛素样肽5(Insulin-like peptide 5, INSL5)的内源性受体。INSL5属于松弛素/胰岛素超家族,1999年Conklin等人在研究该超家族保守的B链半胱氨酸基序(Motif)时,通过检索人类表达序列标签(Expressed sequence tags, EST)数据库而被发现,二者均高表达于结直肠组织。INSL5/RXFP4还参与调控能量代谢、食欲调节和肠道蠕动等生理功能。目前,尚未解析RXFP4与内源性配体或活性小分子配体的复合物三维结构。   2023年1月30日,复旦大学基础医学院王明伟、中国科学院上海药物研究所柳红和杨德华领衔的合作团队在Nature Communications在线发表了题为“Ligand recognition mechanism of the human relaxin family peptide receptor 4 (RXFP4)”的研究论文。该论文首次报道了RXFP4分别结合内源性配体INSL5、小分子RXFP4/RXFP3双激动剂Compound 4及小分子RXFP4选择性激动剂DC591053与Gi蛋白形成复合物的高分辨率冷冻电镜结构,不仅阐明了INSL5独特的受体识别模式,而且揭示了Compound 4拟肽作用的关键位点和DC591053受体亚型选择性的分子机制。 合作团队利用大肠杆菌表达、高密度发酵和专有蛋白纯化技术批量生产INSL5,为结构解析奠定了坚实的物质基础。通过对柳红课题组已构建的四氢异喹啉类优势骨架化合物库进行药理活性筛选,以及基于四氢异喹啉母核开展多轮结构优化,发现了非肽类RXFP4选择性激动剂DC591053(pEC50 = 7.24 ± 0.12)。王明伟课题组和杨德华课题组在NanoBiT系连技术的助推下获得了分别与上述三种不同配体结合、颗粒均一和性状稳定的 RXFP4–Gi蛋白复合物,并通过300 kV冷冻电镜所拍摄的清晰图像和后继单颗粒三维重构,成功解析了分辨率各自为3.19 埃、3.03 埃和2.75 埃的INSL5–RXFP4–Gi、Compound 4–RXFP4–Gi及DC591053–RXFP4–Gi三个复合物的分子结构(图1)。   研究显示,RXFP4识别INSL5的方式不同于已报道的A类GPCR:INSL5 B链羧基末端的α-螺旋深入受体跨膜域(Transmembrane domain, TMD),而A链则覆盖正构位点从而维持配体的完整性和结构稳定性。特别是B链羧基末端的R23B与RXPF4上的E1002.63(右上标数字为Ballesteros–Weinstein编号,用于确定TMD氨基酸的相对位置)形成盐桥,而W24B除了与T1213.32、Q2055.39和R2085.42等残基形成众多极性作用网络外,亦可与W972.60及H2997.43发生与受体激活密切关联的堆叠效应(图2)。人为突变E1002.63、T1213.32和R2085.42导致INSL5完全失活,破坏W972.60、Q2055.39和H2997.43等残基也不同程度地影响了RXFP4的活化。  非选择性激动剂Compound 4也能深入RXFP4的结合口袋,其胍基模拟INSL5的B链R23B与RXFP4上的E1002.63形成盐桥,而吲哚母核则模拟W24B的吲哚环与周围残基形成广泛的相互作用;该小分子配体对RXFP4的激活能力在发生W972.60、E1002.63、T1213.32与H2997.43等残基的突变后显著降低(图3a-b)。然而,选择性激动剂DC591053则展现与Compound 4迥异的结合方式,其吗啉环占据RXFP4独特的配体结合口袋(图3c-d),在3.29、3.33、5.39、5.42和7.39等位点上(Ballesteros–Weinstein编号)与RXFP3的氨基酸差异明显,与亚型选择性相关(图3e)。这个发现得到了功能性实验数据的支持:置换RXFP3和RXFP4上述同源位点的氨基酸,Compound 4对RXFP4突变体L1183.29S+V1223.33S的作用没有显著变化,但DC591053的效价却降低20.9倍;较之Compound 4,DC591053激活Q2055.39H和R2085.42K等RXFP4突变体的能力也受到更大影响。   这项成果将有助于深入研究RXFP4的生理功能和开发高效的选择性RXFP4小分子激动剂,同时也有望提升人们对胰岛素超家族成员多元识别相关受体的认识。  复旦大学基础医学院博士研究生陈彦、复旦大学基础医学院青年研究员周庆同和临港实验室王江研究员为该论文的共同第一作者;复旦大学王明伟讲席教授、中国科学院上海药物研究所柳红研究员和杨德华研究员为该论文的共同通讯作者。合作者包括澳大利亚墨尔本大学Ross A.D. Bathgate教授、中国科学院上海药物所徐华强研究员和常州健亚生物科技有限公司沈纯博士等。该研究成果先后获得了国家自然科学基金委员会、国家科学技术部、国家卫生与健康委员会、中国科学院和上海市科学技术委员会等的经费资助。   全文链接:https://doi.org/10.1038/s41467-023-36182-z
  • 《Science:重大进展!解析丙型肝炎病毒E1E2蛋白复合物的三维结构》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2022-10-27
    • 在一项新的研究中,来自美国斯克里普斯研究所、荷兰阿姆斯特丹大学和英国南安普敦大学的研究人员在病毒学领域实现了一个重要目标:在高分辨率下绘制了丙型肝炎病毒(HCV)表面上的使得这种病毒能够进入宿主细胞的关键蛋白的结构。这一发现详细说明了这种病毒表面上的关键脆位点,如今可以利用疫苗高效靶向这些位点。相关研究结果发表在2022年10月21日的Science期刊上,论文标题为“Structure of the hepatitis C virus E1E2 glycoprotein complex”。 论文共同通讯作者、斯克里普斯研究所综合结构与计算生物学系教授Andrew Ward博士说,“这一长期寻求的HCV结构信息将以前的大量观察结果纳入了结构背景,为针对这一难以置信的目标进行合理的疫苗设计铺平了道路。” 这项新的研究是多年合作的产物,其中包括Ward实验室、Gabriel Lander博士(也是斯克里普斯研究所综合结构与计算生物学系教授)的实验室;阿姆斯特丹大学Rogier Sanders博士的实验室;以及南安普敦大学Max Crispin博士的实验室。 预计全球大约有6000万人---包括约200万美国人---遭受慢性HCV感染。这种病毒感染肝细胞,通常会在几十年的时间里形成一种“无声的”感染,直到肝损伤严重到足以引起症状。它是导致慢性肝病、肝移植和原发性肝癌的主要原因。 HCV的起源并不确定,但据认为它至少在几百年前出现,然后最终在全球范围内传播,特别是在20世纪后半叶通过输血传播。虽然该病毒在1989年被首次发现后大部分被从血库中清除,但它继续主要通过发达国家的静脉注射吸毒者之间的针头共享和发展中国家使用未经消毒的医疗器具而传播。主要的HCV抗病毒药物是有效的,但对于大规模的治疗来说过于昂贵。 一种有效的疫苗可以最终消除HCV这一公共卫生负担。然而,从来没有开发过这样的疫苗---主要是因为研究HCV的包膜蛋白复合物---由两种叫做E1和E2的病毒蛋白组成---异常困难。 论文共同第一作者、Ward实验室和Lander实验室的博士后研究员Lisa Eshun-Wilson博士说,“E1E2复合物非常脆弱---它就像一袋湿的意大利面条,总是在改变形状---这就是为什么在高分辨率下对它进行成像非常有挑战性。” 在这项新的研究中,这些作者发现他们可以组合使用三种广泛中和抗HCV抗体来稳定E1E2复合物的天然构象。广义中和抗体是那些能够防止广泛的病毒毒株的抗体,通过与病毒表面上相对无变化的位点结合来中断病毒生命周期。 这些作者使用低温电子镜对用抗体稳定的E1E2蛋白复合物进行了成像。在先进的图像分析软件的帮助下,他们能够构建出E1E2复合物的结构图,其清晰度和广度是前所未有的---接近原子尺度的分辨率。 这种结构图揭示的细节包括大部分的E1和E2蛋白结构,包括关键的E1/E2界面,以及三个抗体结合点。这些结构数据还阐明了位于E1E2顶部的一系列与糖有关的“聚糖”分子。病毒经常使用聚糖来保护自己不受受感染宿主的免疫系统的影响,但在这项新的研究中,这些结构数据显示HCV的聚糖显然有另一个关键作用:帮助将脆弱的E1E2复合物固定在一起。 掌握E1E2复合物的这些细节将有助于科学家们合理地设计一种有力地激发广泛中和抗体来阻止HCV感染的疫苗。 论文共同第一作者、Ward实验室博士后研究员Alba Torrents de la Peña博士说,“这些结构数据还应当让我们发现这些抗体中和HCV的机制。” 参考资料: Alba Torrents de la Peña et al. Structure of the hepatitis C virus E1E2 glycoprotein complex. Science, 2022, doi:10.1126/science.abn9884.