《研究者致力于光电二维材料》

  • 来源专题:纳米科技
  • 编译者: chenfang
  • 发布时间:2016-03-28
  • 橡树岭国家实验室的研究人员领导的研究小组使用两层理论来解释光电二维材料之间的振动叠加模式。半导体材料在不同角度可以看做是一个新的研究方法,用来设计新一代的节能晶体管和太阳能电池。每一层的原子排列在六角形阵列之中。两层堆积和旋转时,,原子从一层重叠与另一层相合,可以形成一个无限数量的重叠模式,像波纹模式。结果使得两个屏幕覆盖和一个旋转的平面发生反应。理论计算预测一些电子和光学特性叠加模式,但实际上,这些模式可以固定的合成与表征的方式相互旋转。两层半导体材料创造了各种各样的双层叠加模式,这取决于扭转角。有效的表征这些叠加模式可能援助的探索在电子和光电方面潜在的应用。

相关报告
  • 《二维“奇迹”材料疯狂玩转柔性科技》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:姜山
    • 发布时间:2017-03-20
    • 近日,研究者们研制出了一种“奇迹”二维材料,这种材料可以被用在纳米电路中,十分强大。未来可以应用在柔性超大、厚度超薄的可穿戴工具上,也可以助力进行太阳能革命。   一种新型的2D奇迹材料将有助于制造柔性、高效、更小的电子器件。英国华威大学的研究者们已经研制出了一种新的技术来测量平整、原子级薄的、高导电性的、极强的2D材料堆叠的电子结构。 以异质结构闻名的2D材料具有多个堆叠层,可以产生带有超快电荷的高效光电子器件,其可以被用在纳米电路中,并且比传统电路中的材料更为强大。 物理系的教授Neil Wilson博士,研制出了一项测量堆叠中每层电性能的技术,这使得研究者们可以建立最佳的结构,从而实现最快、最有效的电能传输。 Wilson在一项声明中说:“能够第一次看到原子薄层中的相互作用是如何改变它们的电子结构,这是十分令人兴奋的。这项研究也证明了交叉研究的重要性,如果没有美国和意大利同事,我们也不可能实现这一成果。” 根据这项研究,通过将不同二维半导体的单层结合到异质结构中,研究者们有可能创造出新的现象和器件。通过理解并利用这些现象,研究者们可以确定层间激发的电子结构和性质。通过使用合理的器件设计和亚微米角分辨光电子发射光谱(μ-ARPES),再结合光致发光,研究者们还能确定MoSe2/WSe2中异质双层的关键未知的参数, 他们发现K点谷中的价带与300meV的价带补偿微弱杂交,这意味着II型价带的对准。Wilson的技术使用光电效应来直接测量每个层内的电子动量,并且展示了当层间结合时其如何改变。 了解和量化2D材料异质结构如何工作和最佳创造光学半导体结构的能力,为纳米电路和更小、更柔性、更可穿戴的小工具的高效发展铺平了道路。由于原子级薄层可以允许最小量光伏材料的强吸收和有效能源转化,该材料还可以助力于太阳能革命。
  • 《国家纳米科学中心在二维材料范德华界面力学研究取得新进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心—领域情报网
    • 编译者:万勇
    • 发布时间:2021-11-26
    • 近日,国家纳米科学中心张忠研究员、刘璐琪研究员团队在范德华界面力学行为研究方面取得重要进展。相关研究成果以“Elastocapillary cleaning of twisted bilayer graphene interfaces”在线发表于Nature Communications (12, 5069, 2021. https://doi.org/10.1038/s41467-021-25302-2)。 以石墨烯为代表的二维材料具有优异的力、电、光、热等物性。通过逐层堆垛组装构筑的范德华同质/异质结体系可进一步拓展其性能,如特定角度堆叠的双层转角石墨烯表现出超导、超滑等物理力学行为。由于二维材料的大比表面积特性,在构筑范德华同质/异质结过程中,不可避免地夹杂空气中水分子等杂质并聚集形成微纳米尺度鼓泡。一方面受到污染的范德华界面预期会显著降低微纳米器件的性能。另一方面,这种微纳米尺度鼓泡具有高压、限域、大变形等特征,为二维材料应变工程、高压化学、限域催化、电镜下液体池等多领域提供了新的研究契机。因此,如何克服鼓泡污染实现范德华界面原子级洁净、鼓泡应变大小及分布、压差等因素是二维材料制备、转移、物性测量及应用中不可回避的关键问题。 针对同质/异质范德华材料界面力学行为难于测量与表征这一难题。研究团队提出角度可控范德华同质/异质结构筑新策略,实现了转角双层石墨烯制备(ACS Appl. Mater. & Interfaces, 2020; 12(36): 40958-67)。该工作中,研究团队借助侧向力显微镜技术表征转角石墨烯莫尔云纹,实现了对范德华界面洁净度的可视化表征。借助毛细力辅助转移技术引入水、乙醇等介质构筑了纳米级液泡。在弹性能和界面能竞争机制下纳米液泡呈现几何自相似性,具有特定弹性毛细参数。在探针力的激励下石墨烯范德华界面表现出自清洁现象;得益于液泡的边缘失稳,相邻液泡间发生“长程”作用诱导纳米液泡发生自发融合。研究揭示了不同于传统奥斯特瓦尔德熟化机制下二维材料弹性能对融合过程的影响和贡献。通过理论分析结合微孔鼓泡实验技术,进一步研究了预张力对弹性毛细参数和液泡间“长程”相互作用影响及调控,相关机制得到分子动力学模拟支持和验证。 张忠研究员课题组长期致力于低维微纳米材料及结构力学行为研究,在该领域有着深厚的研究经验积累。通过自主搭建的微纳米尺度鼓泡技术-原子力显微术-显微拉曼光谱联用测试表征技术平台,近5年先后实现了双层石墨烯层间范德华界面可控剪切变形与界面剪切应力测量(Phys. Rev. Lett. 2017);揭示界面强弱差异对微纳米尺度鼓泡应变分布及大小的影响,提出预测纳米尺度不同形状鼓泡应变大小和分布的理论解(Phys. Rev. Lett. 2018,封面);实现了纳米级厚度二维材料弯曲刚度实验测量。由于层间范德华界面剪切变形和滑移影响,材料本征力学参数弯曲刚度和杨氏模量表现为独立力学参量,传统薄板理论中弯曲刚度与厚度关系不再适用(Phys. Rev. Lett. 2019, 封面);并对以上研究成果在应变工程、纳米复合材料等领域的影响进行了评述,揭示微纳米尺度界面力学在多学科领域研究中的重要影响(Adv. Mater. 2019, Compos. A 2021)。 中国科学技术大学在国家纳米中心联合培养侯渊博士、美国德州大学奥斯丁分校戴兆贺博士、清华大学张帅博士为论文共同第一作者,分子动力学模拟由清华大学冯诗喆博士完成。国家纳米科学中心刘璐琪研究员、张忠研究员,清华大学李群仰教授、徐志平教授为该工作的通讯作者。该系列工作先后得到了国家自然科学基金委项目重大和重点项目、中国科学院战略性先导科技专项B类、科技部重大科学研究计划等项目的共同资助。 原文链接:https://www.nature.com/articles/s41467-021-25302-2。