《使用纳米颗粒点燃心血管疾病 新的纳米技术将比以往任何时候都更有效地检测动脉阻塞》

  • 来源专题:纳米科技
  • 编译者: 郭文姣
  • 发布时间:2019-12-12
  • 根据世界卫生组织的数据,心脏病和中风是世界上最致命的两种疾病,在2016年造成超过1500万人死亡。造成这两种全球健康危机的一个关键潜在因素是共同的状况,动脉粥样硬化,或脂肪沉积、炎症和血管壁斑块的积聚。到40岁时,大约一半的人会有这种症状,很多人没有症状。

    美国南加州大学维特比生物医学工程系的研究人员发明了一种新的纳米颗粒,通过检测可能引发心脏病和中风的不稳定钙化,医生可以确定斑块何时变得危险。

    研究——从博士生Deborah下巴Eun霁涌的监督下,小卡尔·雅各布博士和卡尔·雅各布III青年椅子,助理教授与格雷戈里·麦基合作,南加州大学凯克医学院的临床手术——发表在《皇家化学学会的《材料化学》杂志上。

    当动脉粥样硬化发生在冠状动脉时,由斑块或钙化引起的破裂引起的阻塞可导致血栓形成,切断流向心脏的血流,这是大多数心脏病发作的原因。当这种情况发生在通向大脑的血管中时,就会导致中风。

    “动脉不需要80%的堵塞才会有危险。动脉中有45%被斑块堵塞可能更容易破裂,”Chung说。“只是因为它是一个大的斑块并不一定意味着它是一个不稳定的斑块。”

    Chung说,当称为微钙化的小钙沉积在动脉斑块内形成时,斑块可能变得容易破裂。

    然而,利用传统的CT和MRI扫描方法或血管造影来鉴别血管钙化是否不稳定并可能破裂是特别困难的,因为血管造影有其他风险。

    该研究的第一作者Chin说:“血管造影需要使用导管,而导管是侵入性的,有组织损伤的固有风险。”“另一方面,CT扫描涉及到电离辐射,会对组织造成其他有害影响。”

    Chung说,传统影像的分辨率限制为医生提供了一个大尺寸钙化的“鸟瞰”,这可能并不一定是危险的。她说:“如果钙化是在微观尺度上,就很难分辨了。”

    该研究小组开发了一种被称为胶束的纳米颗粒,它可以附着在自身上,并点亮钙化点,使成像过程中容易破裂的小块更容易被发现。

    Chin说,这些胶束能够专门针对羟基磷灰石,一种存在于动脉和动脉粥样硬化斑块中的独特的钙。

    “我们的胶束纳米颗粒对细胞和组织的毒性最小,对羟基磷灰石钙化高度特异性,”Chin说。“因此,这减少了识别有害血管钙化的不确定性。”

    该团队已经在培养皿中钙化细胞上测试了他们的纳米颗粒,在小鼠动脉粥样硬化模型中,以及使用血管外科医生Magee提供的病人来源的动脉样本,这表明它们不仅适用于小动物,也适用于人体组织。

    “在我们的研究中,我们证明了我们的纳米颗粒在最常用的动脉粥样硬化小鼠模型中与钙化结合,并且在来自患者的钙化血管组织中也起作用,”Chin说。

    Chung说,研究小组的下一步是利用胶束颗粒用于靶向药物治疗动脉钙化,而不是仅仅作为检测潜在阻塞的手段。

    “纳米粒子和纳米医学背后的想法是,它可以像亚马逊的运输系统一样,把药物运送到身体的特定地址或位置,而不是你不想去的地方,”Chung说。

    她说:“希望这能降低剂量,但在不伤害正常细胞和器官过程的情况下,对疾病部位有很高的疗效。”

    ——文章发布于2019年12月9日

相关报告
  • 《纳米技术如何实现早期阿尔茨海默氏症的检测》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2021-03-20
    • AZO纳米发布关于纳米医学的内容,文章指出一项新的纳米技术突破可能有助于早期发现阿尔茨海默氏症和其他神经退行性疾病,并帮助它们的治疗。研究小组在血液中发现了以前未知的生物标记物,可以用来检测AD。科学家们在这一发现的基础上,开发了一种针对这些生物标记物的尖端检测方法,该方法依靠纳米技术来检测受试者血液中的神经退化迹象。这可能意味着在AD和其他神经退行性疾病的最初症状变得明显之前多年就能发现,从而使患者在大脑发生重大损伤之前就能得到早期有效的治疗。这也使医生和医疗专业人员能够更有效地跟踪AD的发病和发展,使他们能够更好地了解这种破坏性的疾病。 研究人员转向纳米技术,通过提高目前质谱分析技术的灵敏度来帮助开发他们的早期AD诊断方法。这取决于脂质体的使用——脂质体是一种球形分子,其层状类似于细胞膜表面——来引诱和捕获血液中的蛋白质,这些蛋白质表明淀粉样斑块和神经退行性疾病的存在。早期对患有AD的啮齿目动物的试验表明,纳米颗粒可以吸引数百种与神经退化有关的蛋白质。这些蛋白质被完整地困在颗粒表面,使科学家能够提取和分析它们。这项研究更像是一次钓鱼探险:我们不知道海洋表面下有什么。我们开发的纳米工具使我们能够更深入地观察血液蛋白质组,在数千种其他血液循环分子中,识别出与大脑神经退化过程直接相关的感兴趣的蛋白质。 该研究的合著者、曼彻斯特大学纳米医学教授Kostas Kostarelos说 跟踪AD不同阶段血液中蛋白质的波动水平——从病前状态一直到有症状的疾病——意味着该团队已经能够绘制出疾病监测中的一些重要模式。 最终,这可能导致新的血液测试的可能性,以预测AD和广泛的神经退行性疾病的发病。 Kostarelos总结道:“我们希望这些阿尔茨海默氏症的早期预警信号有一天能够发展为血液测试,我们正在积极寻求在人类血液中验证这些特征。”
  • 《自愈纳米颗粒的广泛应用》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2020-11-25
    • AZO于2020年11月24日发布关于纳米颗粒的内容,文章指出自愈材料的有用性在两年前被发现,这种材料至今仍引起科学界的兴趣,研究人员使用纳米技术来增强自愈材料的有效性。 纳米颗粒可以分散在整个材料(如聚合物),穿透裂缝,并帮助启动自我修复过程。本文讨论了自愈纳米颗粒的广泛应用。 自愈纳米粒子的一般性质和机理 在聚合物中加入纳米材料和纳米结构可以提供丰富的官能团、大的表面积和独特的特性(导热性、导电性和生物性)来帮助愈合过程。 纳米技术也有助于理解潜在的微和纳米级聚合物链的相互作用。这些信息有助于研究人员设计出具有多种应用的更先进的自愈聚合物。例如,科学家已经开发了一种利用环氧树脂、聚氨酯、橡胶和聚甲基丙烯酸甲酯的自愈合碳纳米管纳米复合材料。 自愈过程的有效性取决于纳米颗粒的类型、大小和形状。自愈合聚合物/碳纳米管的效率取决于其他因素: 矩阵的修改 纳米管的功能 处理方案 矩阵-纳米粒子相互作用或兼容性 2006年,马萨诸塞大学阿姆赫斯特分校材料研究科学与工程中心的托马斯·罗素博士指出,这些材料可以修复任何形成的裂缝,且几乎不受外部侵入。 纳米膜还可以促进自愈特性。一些常用的纳米膜是纳米二氧化硅、石墨烯、碳纳米管(CNTs)、陶瓷氧化物和纳米纤维素。 研究人员报道,纤维素纳米晶须的加入使聚乙烯醇的抗拉强度提高了60倍。类似地,具有高导热性的石墨烯和碳纳米管等导电纳米管被用作纳米级加热器。因此,纳米颗粒被用来增强聚合物基质内的自愈机制。 自愈合纳米颗粒的应用 聚合物电损伤的自我修复 电网需要耐用、稳定和强介电聚合物来适当地绝缘导线。 高的局部电场导致电树,导致介电材料的结构破坏和导电退化,以及大规模的设备故障。 科学家们已经证明,在热塑性聚合物中加入超顺磁性纳米粒子(小于体积百分比的0.1%)可以帮助修复被电树刺伤的部位。这一措施也将确保绝缘性能的恢复。 在振荡磁场的影响下,纳米粒子移动到电树上并产生更高的局部温度。这将导致修复聚合物中的电树通道。这种方法也增加了电子和能源应用的电力电缆的耐久性。 乳腺癌术后复发的预防 水凝胶在1960年首次被报道。水凝胶是由交联的亲水聚合物组成的三维网络,它在水中膨胀。由于分离的聚合物链的物理和化学交联,它可以在不破坏结构的情况下保持大量的水。 水凝胶是一种非常重要的材料,特别是在肿瘤治疗和再生医学方面。这是因为它具有调节组织微环境的仿生能力。 利用席夫碱基连接,科学家们开发了一种基于石墨烯纳米颗粒的新型自愈合水凝胶。该石墨烯纳米颗粒基自愈水凝胶由硫酸软骨素、多醛和支化聚乙烯亚胺共轭石墨烯组成。 石墨烯纳米颗粒自愈水凝胶具有100%的自愈性,力学性能得到改善。一项小鼠乳腺癌术后复发的体外研究显示了基于石墨烯纳米颗粒的自愈合水凝胶的潜力。 自愈的电池 锂离子可充电电池通常使用碳基负极。这些电池容易形成枝晶,枝晶是在一个电极上发育并向另一个方向生长的小型金属结构。它们可能会引起短路甚至火灾。 尽管硅电极每单位体积能提供更高的能量,但由于充电周期的膨胀和收缩,它经常会崩溃。 伊利诺伊大学的研究人员开发了一种自愈电极,利用嵌入微胶囊的导电物质。电极的膨胀导致微胶囊破裂,使裂纹填充材料分散。 自我修复DNA纳米结构 科学家最近设计了具有自愈特性的DNA纳米结构。这些纳米结构可用于药物传递和诊断。然而,在应用DNA纳米结构之前,首先要做的是开发一种对抗核酸酶攻击的策略,即找到保护或修复受损DNA分子的方法。 纳米结构通常在24小时内在体温下的血清中被破坏。研究人员已经创造了各种策略,如dna -纳米管来稳定血清中的纳米结构。在含有纳米管的血清中加入这些更小的DNA贴片可以修复受损的结构。 自愈合石墨烯基复合生物传感器 可穿戴电子传感器是一种功能强大的设备,有助于疾病的早期诊断,并有助于持续监测个人的健康状况。然而,这些可穿戴传感设备在与人体接触时,不可避免地会受到划伤和机械割伤,从而导致其故障。 在一项概念验证中,研究人员揭示了一种具有自愈特性的柔性纳米关节传感器的发展。他们报道了一种带有功能化金纳米颗粒薄膜的自我修复聚合物的修正提高了基底和传感薄膜的愈合效率。