《北京基因组所等揭示 O -GlcNAc 糖基化修饰维持基因组稳定性的分子机制》

  • 来源专题:生物安全知识资源中心 | 领域情报网
  • 编译者: huangcui
  • 发布时间:2017-12-14
  • DNA 总是受到内源或外源环境中多种损伤因子的攻击,例如 DNA 复制错误、细胞代谢产物、电离辐射、紫外线照射和化疗试剂等,这些因素都会引起 DNA 损伤的产生。如果不能够及时有效修复 DNA 损伤,将导致基因组不稳定性,进而诱发多种人类疾病,如肿瘤、神经退行和出生缺陷。为维持基因组稳定性,生物体进化出一套保护机制来监控 DNA 损伤并及时修复,这一机制即为 DNA 损伤应答。

    中国科学院北京基因组研究所郭彩霞研究组与中国科学院动物研究所唐铁山研究组合作,通过质谱技术发现跨损伤合成 DNA 聚合酶 Polη第 457 位苏氨酸能发生一种新的蛋白质翻译后修饰:氧连糖基化修饰(O-GlcNAcylation)。已知在紫外线辐射或顺铂等化疗试剂暴露条件下,跨损伤合成 DNA 聚合酶 Polη被招募到复制叉处替换高保真性 DNA 复制酶,在相应的损伤 DNA 模板对侧整合正确的核苷酸,从而促进复制叉的继续前行。但与高保真的 DNA 复制酶相比,Polη复制未损伤 DNA 模板的错误率显著升高(10-2~10-3),极易导致遗传信息不能够正确地从亲代细胞传递到子代细胞中,因此它到复制叉的招募和移除必须受到严格调控,然而关于 Polη在 TLS 完成后如何从复制叉解离尚不清楚。研究发现,干扰 Polη的氧连糖基化修饰虽不影响其被招募到受阻复制叉处及其在损伤 DNA 模板对侧整合核苷酸的能力,但显著削弱 Polη与 CRL4CDT2 E3 泛素连接酶之间的相互作用,降低第 462 位赖氨酸的多泛素化修饰水平,进而抑制 p97-UFD1-NPL4 复合体所介导的 Polη与复制叉分离的过程,导致细胞内突变率上升、细胞对紫外线和顺铂试剂敏感性增强、DNA 复制叉移动速率变缓等。该项研究工作揭示了 Polη 氧连糖基化修饰与泛素化修饰之间的互作关系,以及 DNA 复制过程中多种 DNA 聚合酶转换的分子机制。Polη在多种肿瘤细胞中表达显著升高,与顺铂等化疗药物的耐药性产生密切相关,也与非小细胞肺癌患者的生存期呈负相关。

    该发现首次报道氧连糖基化修饰参与调控细胞跨损伤合成过程并维持基因组稳定性,从 DNA 损伤应答角度揭示了对营养水平敏感的氧连糖基化修饰调控基因组稳定性和肿瘤耐药性的分子机制,为解决顺铂等化疗药物的耐药性提供新的思路和策略,有望改善部分肿瘤患者的生存状况。

    研究工作以 Polη O-GlcNAcylation governs genome integrity during translesion DNA synthesis 为题,在线发表在 Nature Communications 上。研究工作获得了国家自然科学基金委、科技部等的资助。

  • 原文来源:https://www.nature.com/articles/s41467-017-02164-1
相关报告
  • 《浙江大学易文/吴李鸣团队揭示O-GlcNAc糖基化在肿瘤免疫逃逸中的新机制》

    • 来源专题:转基因生物新品种培育
    • 编译者:姜丽华
    • 发布时间:2023-03-31
    • 逃避免疫系统监视的能力是肿瘤的基本特征之一。程序性死亡配体1(PD-L1)是一种在癌细胞表面高度表达的关键免疫检查点蛋白,与肿瘤免疫逃避密切相关。PD-L1能与细胞毒性T淋巴细胞表面的PD-1相结合,从而抑制T细胞的抗肿瘤活性。最近,以PD-1/PD-L1抑制剂为典型代表的免疫检查点阻断疗法已成为治疗多种肿瘤的有效策略。然而,在一些癌症类型中,患者的反应率仍然很低,并且随着治疗的进行,耐药性也逐步升高。PD-L1蛋白表达水平被认为是评估抗PD-L1/PD-1治疗的临床反应性的关键生物标志物。因此,深入揭示并阐明PD-L1表达的调控分子机制有望为肿瘤治疗提供新的干预靶点。 乙酰葡萄糖胺修饰(O-GlcNAc)是通过N-乙酰葡糖胺以β-糖苷键形式共价连接到蛋白质的丝氨酸或苏氨酸羟基上的一种翻译后修饰。大量的研究发现O-GlcNAc糖基化修饰在基因转录调控、细胞信号传导通路、细胞周期调控、应激反应、代谢重编程等生理过程中发挥了重要作用。然而O-GlcNAc糖基化在肿瘤免疫逃逸过程中的作用尚且未知。 2023年3月22日,浙江大学生命科学学院、浙江大学医学院附属第一医院易文和吴李鸣团队在PNAS杂志上在线发表了题为 “O-GlcNAcylation promotes tumor immune evasion by inhibiting PD-L1 lysosomal degradation”的研究论文,该研究揭示了O-GlcNAc糖基化调控PD-L1的溶酶体降解通路,抑制T细胞介导的抗肿瘤免疫的新机制。 研究人员首先通过TCGA数据库分析发现在多种类型的肿瘤中,糖基转移酶(OGT)的表达与CD8+ T细胞的浸润程度呈现显著负相关,并且与肿瘤的不良预后显著相关(图1a)。临床肝癌组织切片染色发现OGT的表达与CD8+ T细胞的浸润程度也呈现显著负相关(图1b)。体外T细胞杀伤实验表明抑制肿瘤细胞中OGT的活性显著促进T细胞对肿瘤细胞的杀伤(图1c)。进一步的实验发现OGT活性下降抑制了PD-L1的蛋白表达而PD-L1的mRNA水平没有发生变化,提示糖基化对PD-L1的表达影响发生在蛋白层面。对PD-L1蛋白降解的半衰期进行检测发现OGT通过抑制PD-L1的溶酶体降解途径从而促进PD-L1的稳定性。PD-L1的溶酶体降解是通过胞内ESCRT复合体介导的。作者发现ESCRT复合体中一个关键蛋白HGS具有高度O-GlcNAc糖基化;进一步实验发现HGS的糖基化抑制了其与PD-L1的互作,阻断了PD-L1通过胞内体向溶酶体的运输过程,从而抑制PD-L1在溶酶体中的降解,促进了PD-L1在细胞表面的表达,进而抑制了T细胞对肿瘤细胞的杀伤作用(图1d)。 上述对PD-L1表达调控机制的研究提示抑制O-GlcNAc糖基化可作为肿瘤免疫治疗的联合靶点。作者进一步验证了OGT抑制剂联合PD-L1单抗能够协同抑制肝癌以及黑色素瘤在免疫完全的小鼠体内的生长。此外,作者还设计了HGS糖基化的竞争性短肽作为抑制剂,发现其处理细胞能降低PD-L1表达并增强T细胞对肿瘤细胞的杀伤。总之,该研究揭示了O-GlcNAc与肿瘤免疫逃逸之间的新联系,并提出了针对PD-L1介导的免疫检查点阻断治疗的新策略。 浙江大学生命科学学院、浙江大学癌症研究院易文教授和浙江大学医学院附属第一医院吴李鸣研究员为论文的共同通讯作者。浙江大学生命科学学院博士后朱强为论文的第一作者。浙江大学生命科学学院徐良研究员参与了这项工作。 原文链接: www.pnas.org/doi/10.1073/pnas.2216796120
  • 《研究揭示三维基因组的单分子拓扑结构多样性和细胞异质性》

    • 来源专题:转基因生物新品种培育
    • 编译者:姜丽华
    • 发布时间:2023-03-08
    •   高等真核生物基因组存在复杂的三维空间结构,在不同尺度下形成如染色质环(Chromatin loops)、拓扑关联结构域(TADs)、活性/非活性染色质区室(A/B compartments)和染色体域(Chromosome territories)。这些结构对于基因组稳定性的维持、基因表达的精准调控具有重要作用,从而影响细胞命运决定和表型建立。经典的基因组三维结构主要通过染色体构象捕获(3C)及其衍生方法如4Cs、5C、Hi-C、ChIA-PET为代表的多种形式的高通量技术揭示。这些技术可以捕获细胞核内空间相邻的成对DNA序列,但无法捕获细胞群体中基因组内协同的多位点相互作用(multi-way contact)和单分子拓扑结构(single-allele topology)。此外,基因组3D结构在细胞周期、发育和分化过程中动态变化,且与多个基因及调控区间的染色质相互作用相关。获得细胞群体中的染色体单分子拓扑结构对于探究基因组的动态折叠机制和与基因调控功能的关联性颇为重要。     近年来,多个实验室建立了如ChIA-drop、split-pool recognition of interactions by tag extension(SPRITE)、Tri-C、multi-contact 4C和Pore-C等方法,用于探讨染色质多位点协同相互作用和群体细胞的染色体单分子拓扑结构的捕获。这些方法中,Pore-C具有技术简单,且可以同步捕获全基因组高阶多位点互作信息和DNA甲基化修饰的优点。   3月6日,中国科学院昆明动物研究所研究员侯春晖团队与中山大学中山眼科中心副研究员肖传乐团队合作,在《自然-通讯》(Nature Communications)上,发表了题为High-throughput Pore-C reveals the single-allele topology and cell type-specificity of 3D genome folding的研究论文。该工作优化建立了高通量的Pore-C方法,显著增加了高阶染色质互作的检测通量,并揭示了三维基因组的单分子拓扑结构多样性和细胞特异性。   研究发现,Pore-C技术测序通量相对较低的原因可能是与DNA交联的蛋白质没有被完全去除而导致测序纳米孔芯堵塞。为了解决这一问题,研究优化了酶解条件,测试了多次蛋白酶解和使用混合蛋白酶的策略,提高了测序产量约80%,近乎成倍降低了该技术的使用成本。此外,研究通过整合NGMLR和Minimap2比对算法开发了MapPore-C比对流程,显著改善了比对准确性和数据利用率低的问题,同时,研究通过与Hi-C数据比较,验证了HiPore-C能够高度重现基于Hi-C捕获的染色质环、拓扑相关结构域和染色质区室等基因组3D结构。进一步,研究探索了染色体间高阶互作发现,多数互作并非发生在端粒和中心粒之间,而是发生在基因组区域,且形成两个转录活性不同的互作枢纽,其中一个枢纽基因密度、增强子密度和活跃状态染色质相关的表观遗传修饰水平均更高。研究还发现,多个染色体的tRNA基因富集区域之间发生跨染色体的高频相互作用,HiPore-C高阶互作不仅发生在TAD和compartment内部,而且能够跨越多个区室、拓扑相关域和染色质环,基于直接和间接的DNA片段间相互作用构建的染色质互作图谱与常规Hi-C图谱总体相似,但间接DNA片段互作更加倾向跨越多个结构单元。上述研究揭示了跨染色质结构域互作存在的广泛性,并突出了HiPore-C技术在单分子水平解析基因组三维高阶互作的优势和重要性。   研究通过分层聚类的方法,讨论了不同类型细胞的拓扑结构中呈现的单分子拓扑结构集群。这些结构集群是类亚TAD(subTAD-like)结构域形成的基础,具有明显的细胞特异性,表明单分子拓扑结构多样性是细胞群体TAD结构域划分的基础,对探讨基因组空间结构组织和细胞特异的基因表达间的关系具有重要意义。此外,研究使用HiPore-C数据比较了红系K562和淋巴系GM12878细胞中在β-globin locus的高阶互作。结果发现,人ε-和γ-珠蛋白基因启动子和多个增强子之间形成了多位点同时互作、细胞特异的增强子-启动子中心,这种相互作用可能是动态的。研究分析了HiPore-C同时捕获染色质高阶互作和DNA甲基化状态的能力,发现了DNA甲基化信号与染色质环锚点间相互作用强度呈正相关,此外,可根据DNA甲基化水平准确地区分染色质区室的类型(A vs B)。   该研究建立了HiPore-C技术,可全面描述单分子拓扑结构的多样性,揭示的单分子拓扑结构的动态折叠比以前想象的更为复杂,进一步提升了关于三维基因组折叠规律的认知。