《昆明动物所等揭示罗伯逊易位在牛属物种形成中的作用》

  • 来源专题:转基因生物新品种培育
  • 编译者: 姜丽华
  • 发布时间:2023-02-08
  • 罗伯逊易位又称着丝粒融合,是指两条近端着丝粒异源染色体在进化过程中发生着丝粒染色体融合,形成一条中部或近中着丝粒染色体。罗伯逊易位是核型进化的主要驱动因素之一,传统观念认为这种类型的核型进化会抑制减数分裂以及降低重组率,从而促进生殖隔离和物种形成。但是,物种内的罗伯逊易位多态现象表明其对生殖隔离和物种形成的影响有待商榷。

      牛属物种中广泛存在着罗伯逊易位,其中Rob(2;28)(祖先2号染色体和28号染色体易位融合)在独龙牛中已固定下来。独龙牛是一种半野生半家养的珍稀牛种,栖息在高山陡坡环境中,具有十分优秀的攀爬能力,其肌纤维以细长著称,因与当地黄牛杂交频繁,种质资源受到了严重威胁。其独特的生活环境和频繁的杂交历史为研究核型变化和罗伯逊易位提供了理想的研究材料。

      近日,中国科学院院士、中国科学院昆明动物研究所研究员张亚平学科组和云南大学动物遗传与分子进化省创新团队研究员李艳课题组等,在Molecular Biology and Evolution上在线发表题为Large-scale chromosomal changes lead to genome-level expression alterations, environmental adaptation and speciation in the gayal (Bos frontalis) 的研究论文。

      该研究利用二代、三代和HiC等测序技术,组装了独龙牛染色体水平基因组,从单碱基水平揭示了独龙牛Rob(2;28)的分子特征(图1)。基于牛属物种群体基因组数据,研究通过系统发育分析、群体遗传结构分析、主成分分析和遗传渗透分析等分析显示罗伯逊易位并未降低融合区域的重组率和遗传渗透程度(图2),而是形成了新的TAD结构域(图3)。同时,在原先的2号和28号染色体间发生了大量的远距离互作,染色质开放状态在融合区域也发生了显著性变化,大量富集在这两条染色体上的与肌肉性状相关的基因在独龙牛中产生了特异表达(图3)。这些罗伯逊易位引起的变化,连同基因组范围内肌肉相关基因的结构变异和表达变化(图4),可能导致了独龙牛肌肉性状的快速变化,从而可能使之适应山地环境。上述研究结果表明独龙牛中的罗伯逊易位可能通过染色质三维结构重塑去改变易位染色体上的基因表达,驱动生物学功能发生快速进化,促进物种对地理隔离的新栖息地的适应,进而引发物种形成,为深入理解核型进化和物种形成之间的关系提供了新的见解。

      相关研究工作得到第二次青藏高原综合科学考察研究、国家重点研发计划、中国科学院战略性先导科技专项、国家自然科学基金委、昆明市高层次人才培养计划的支持。

  • 原文来源:https://www.cas.cn/syky/202301/t20230119_4872895.shtml
相关报告
  • 《昆明植物所与合作者揭示罂粟属物种的网状异源多倍化起源》

    • 来源专题:生物育种
    • 编译者:姜丽华
    • 发布时间:2023-04-28
    • 自然杂交和多倍化是物种形成和演化的重要驱动力,尤其对于被子植物,其导致的网状进化对基于二叉分枝理论的“生命之树”提出了挑战。然而,在全基因组水平解析植物网状演化的研究案例缺乏,究其原因在于具有全基因组序列的物种在属、科级水平的覆盖度与代表性不足。   罂粟属植物因其重要的药用、经济和观赏价值而备受关注,目前该属植物已经发表3个高质量基因组物种。其中,鸦片罂粟(Papaver somniferum)和渥美罂粟(Papaver setigerum)的形成涉及多倍化过程。该研究以三种罂粟属植物基因组为基础,结合亚基因组分型技术,对罂粟属植物的多倍体起源进行了细致的解析。研究发现,罂粟属植物的多倍化事件并非已经报道的简单的全基因组加倍,而是涉及复杂的网状异源多倍化(图1A-D)。此外,研究人员还利用LTR插入时间估计了各个物种的形成时间并进一步推断了物种形成过程(图1E,图2)。   基于该研究提出的基因组网状演化模型,STORR(吗啡合成的关键基因)的融合事件最有可能发生在A和C的祖先中,甚至最早可能发生于这个物种复合体的最近共同祖先中,并通过杂交方式传入鸦片罂粟和渥美罂粟的基因组中(图2)。总体而言,该研究不仅对于理解网状演化在生物多样化中的作用具有重要意义,还对理解吗啡生物合成途径的演化具有意义。   近日,中国科学院昆明植物研究所、山东省农科院和于默奥大学等单位的研究团队合作,在国际知名期刊Nature Communications在线发表了题为Subgenome-aware analyses suggest a reticulate allopolyploidization origin in three Papaver genomes的研究论文。中国科学院昆明植物研究所极小种群野生植物综合保护团队保护园艺学与种质创新专题组博士研究生张仁纲、山东省农科院博士后鲁朝霞、源宜基因李光远为论文的共同第一作者。中国科学院昆明植物研究所马永鹏研究员、山东省农科院贾凯华博士和瑞典于默奥大学赵伟博士为论文的共同通讯作者。该工作还包含来自北京化工大学、济南大学、石家庄人民医专、扬益信孚(济南)生物科技有限公司、山东省林草种质资源中心、北京林业大学等合作者的贡献。该研究得到了国家重点研发计划(2022YFF1301702)、云南省自然科学基金重点项目(202001AS070019)、中国科学院西部之光及山东省农科院创新工程及瑞典研究理事会等项目的资助。
  • 《昆明动物所等揭示高山倭蛙皮肤适应强紫外环境的分子机制》

    • 来源专题:转基因生物新品种培育
    • 编译者:姜丽华
    • 发布时间:2022-12-07
    •   阳光对于生物至关重要但又有过强的紫外辐射,不仅可能诱导黑色素瘤以及其他皮肤癌症的产生,严重的甚至还会威胁生物生存。如何防御过多的紫外辐射对生物造成的影响,一直以来备受关注。许多生物体发展了不同的适应性特征,以对抗紫外辐射的有害影响,例如鸟类羽毛的颜色、人体皮肤色素沉着等。在分子层面,目前发现与抗氧化代谢、DNA修复途径等相关的基因可能在预防或减少紫外辐射造成的损伤中发挥了重要作用。然而,已有研究大部分是基于实验室对小鼠或人类细胞开展的体外紫外暴露实验,而对于自然状态下动物抵御紫外辐射的机制研究,人们大多通过比较基因组分析,揭示有可能关联的基因,尚缺乏深入的研究。高海拔地区空气稀薄,具有极强的紫外辐射,分布在此的高原动物,进化出了一系列适应性表型以抵御紫外辐射。不同于鸟类、哺乳类等具有毛发、鳞片等覆盖,蛙类皮肤裸露,没有物理防护,这使得它们对于紫外的照射更为敏感,而能世居在高原上的蛙类,例如目前世界上海拔分布最高的蛙类—高山倭蛙(Nanorana parkeri),为系统解析生物紫外适应的机制提供了可遇不可求的模型。   中国科学院昆明动物研究所研究员车静团队长期关注青藏高原地区两栖、爬行动物的物种形成及适应性演化问题,围绕高山倭蛙这一独特的物种体系长期开展研究工作(PNAS, 2010, 2015, 2018a,b; Asian Herpetol. Res., 2019)。此次,在前期研究基础上,联合国内外5个研究团队,以高山倭蛙(~4500m)为主要研究对象,采用整合生物学的分析方法,通过与其低海拔近缘物种双团棘胸蛙(N. phrynoides, ~1700m)和棘胸蛙(Quasipaa spinosa, ~118m)进行比较,揭示了高山倭蛙皮肤适应高海拔强紫外环境的分子调控机制。   生理实验结果表明,紫外照射后,高山倭蛙相对于低海拔近缘种皮肤的损伤程度较小,具有更快速清除自由基的能力;代谢组数据显示紫外照射后,高山倭蛙相较于棘胸蛙皮肤,分泌较多的与抗氧化、抗炎症、损伤修复等相关的代谢物(如黑色素、维生素、组胺),提示高山倭蛙演化出了高效的抵御紫外辐射及修复紫外损伤的策略(图1)。   时序转录组学分析显示,免疫反应、炎症及抗氧化、热激反应、细胞周期调节等不同应答功能通路呈现出交替的时序表达差异,包括早期表达上调(early-phase up-regulation)、后期表达上调(later-phase up-regulation)、逐步上调(gradually increased)、逐步下调(gradually decreased)(图2),miRNA在部分功能通路的时序差异表达中起调控作用,表明了高山倭蛙在强紫外环境下,多系统表达互作,协同实现紫外抵御(图3)。与近缘种的比较基因组学和转录组学研究显示,多个与紫外抵御相关基因(包括免疫调节、细胞凋亡、胶原蛋白形成、氧化压力应激、黑色素代谢以及DNA修复等),在高山倭蛙中受到正选择作用。通过体外酶动力学实验发现,其中黑色素合成中的关键基因TYR,在高山倭蛙中受选择的突变位点能显著提升络氨酸酶的酶活。   综上,不同于以往基于模式生物开展的体外细胞水平的实验研究,该研究通过紫外梯度实验结合多组学分析,明确了高山倭蛙已形成显著的紫外适应,系统揭示了其应对强紫外的分子抵御调控机制。该研究不仅有助于理解自然环境下生物对紫外环境的适应抵御策略,还对与人类皮肤相关的医学健康具有重要的参考和应用价值。   该研究以The highest-elevation frog provides insights into mechanisms and evolution of defenses against high UV radiation为题于近日发表在PNAS上。相关研究工作得到中国科学院战略性先导科技专项、第二次青藏高原综合科学考察研究项目、国家自然科学基金项目,以及中国西南野生生物种质资源库动物分库(国家重大科技基础设施专项)等研究项目的资助。