《研究人员打造由单根光纤驱动的多个高密度纳米激光阵列》

  • 来源专题:光电情报网信息监测服务平台
  • 编译者: husisi
  • 发布时间:2023-02-08
  • 当下,光学集成设备作为电子集成设备的替代品正日益受到关注。而小型光源的高密度集成及其高效的驱动和控制,则是光学技术的关键组成部分。不过,随着激光阵列密度的增加(或激光之间的间距变得更窄),在非常微小的空间内放置和驱动电极阵列的能力正迅速走向极限。

    近日,由韩国高丽大学(Korea University)光工程实验室的Kim-Myung-Ki教授领导的研究小组证明,密集集成的纳米激光阵列可以通过一个光波导端口完全驱动和编程,这一成果在光学集成电路和互连方面看起来非常有前景。

    具体来看,该团队使用转移打印技术在直径为2μm的光学超光纤上以2D和3D方式打印了多个激光间距为18μm的光子晶体纳米激光器,并控制泵浦光束的多种引导模式来选择性地驱动激光阵列。

    通过光/光波导端口驱动纳米激光阵列

    以往为了给激光阵列提供电流,必须为每个单独的激光引入一对电极,这导致了显著的芯片空间和能量消耗以及处理延迟。

    不过,这个关键的限制可以通过用光驱代替电驱动器来解决。与电子不同,光是一种波,可以形成自由的空间干涉图案。利用光的空间干涉图样作为激光阵列的驱动源,就可以实现超高密度的激光阵列源。

    Kim-Myung-Ki教授表示:“我们已经通过实验证明,密集打印在光学超纤上的三维纳米激光阵列可以通过泵浦光束通过同一光纤的可切换模态干涉来驱动和编程。”

    该团队的全光方法通过光沿着一根光纤传播来驱动多个高密度纳米激光阵列。

    “我们通过调整泵浦光束的偏振和脉冲宽度来编程干涉模式,”Kim表示,“并且观察到打印的纳米激光阵列可以完全由泵浦光束的模态干涉控制。然后我们用数值计算证实了我们的观察结果。”

    与传统的电驱动激光阵列相比,该团队在实验中能够通过消除大而复杂的电极来减小激光阵列的整体尺寸,并从根本上最大限度地减少了电极引起的热量产生和处理延迟。

    对高速/光学集成电路的需求提升

    互补金属氧化物半导体工艺的进步,使得晶体管的超大规模集成成为可能,半导体电子学正在帮助满足处理海量数据的需求。

    “随着半导体芯片变得越来越紧凑,制造过程变得越来越复杂和昂贵。而由于量子隧穿效应,这一技术正在接近物理极限——不可避免地会导致能量耗散,并限制了信息处理的带宽。”Kim表示。

    因此,光学集成电路正成为一种替代方案——用光取代电路中的电子。“这是一个集成系统,通过微芯片上的光来检测、生成、传输和处理信息。电子传输/互连是消耗大量能源并严重降低处理速度的主要因素。我们正专注于光互连的研究,用光取代这些电互连。”

    在芯片内部使用光波导而不是铜线,可以实现更高的带宽,同时在互连中产生更少的热量。挑战在于,随着集成电路的尺寸向纳米级推进,芯片级光学元件(激光器)必须高度集成,必须提供未来的解决方案来有效地驱动和控制它们。

    Kim说:“我们的工作为高密度激光阵列提供了一种新的解决方案,这对于光学互连的发展至关重要,并且可以成为光学集成电路未来发展的关键技术。”

相关报告
  • 《Nature | 玉米智能冠层结构提高高密度产量》

    • 来源专题:战略生物资源
    • 编译者:李康音
    • 发布时间:2024-06-13
    • 2024年6月12日,中国农业大学田丰及李继刚共同通讯在Nature 在线发表题为Maize smart-canopy architecture enhances yield at high densities的研究论文,该研究首次在玉米中鉴定到“智慧株型”基因lac1,揭示了光信号动态调控lac1促使玉米适应密植的分子机制,建立了“一步成系”的单倍体诱导编辑技术体系。 玉米(Zea mays)是世界上产量最高的作物,是人类食物、牲畜饲料和工业材料的主要来源。在过去的几十年里,种植密度的持续增加对美国产量的提高起了关键作用—从20世纪30年代的每公顷3万株增加到目前的每公顷8万株。包括中国在内的其他国家也出现了类似的趋势。这一成功在很大程度上归功于耐高密度玉米品种的培育。 优化植株结构是玉米适应密集种植的先决条件。叶角是决定植物构型的主要性状。直立叶片角度减少了相互遮阳,增加了太阳辐照穿透,从而提高了群体水平上的光合效率,最终提高了密植条件下的籽粒产量。在当代玉米育种中选择了更多的直立叶片。在典型的玉米田密集的冠层中,不同冠层的叶子接受不同质量和数量的阳光,这需要不同的叶片方向来最大限度地拦截光和光合作用。因此,适合密集种植的理想植物结构不是简单地要求在整个冠层上均匀的直立叶片角度,而是需要在不同冠层上优化叶片角度的分布。Ort等人(2015)提出了一种被称为“智能树冠”的理想型,其中包括优化的植物结构,以及叶片中改善的生化特征,如不同Rubisco催化能力和光系统。从结构上看,智能冠层的上冠层叶片直立,中冠层叶片直立较少,下冠层叶片相对扁平。这样的树冠结构将允许光线在密集的树冠内更均匀地传播,最大限度地减少上部叶子的光饱和和下部叶子的光缺乏。 突变体分析、数量性状位点(QTL)克隆和比较基因组研究已经鉴定出一系列控制玉米叶片角度的基因。然而,这些叶角基因大多具有冠层效应,下叶、中叶和上叶的叶角都以相似的方式受到影响。然而,迄今为止还没有在玉米中发现能够在不同冠层上不同地调节叶片角度以产生类似冠层的智能植物结构的基因。此外,密集的种植导致树冠遮荫,触发避荫反应。1992年,双子叶植物拟南芥遮荫诱导茎伸长的分子调控机制的研究取得了实质性进展。相比之下,作为决定世界上产量最高的作物冠层结构的主要性状,叶片角度是如何随着种植密度的增加而动态调节的,这在很大程度上仍然是未知的。 该研究以智能冠层1号(lac1)为研究对象,确定了其上部叶片直立,中部叶片直立较少,下部叶片相对平坦的自然突变体叶片角度结构。在密植条件下,Lac1提高了光合能力,减弱了避荫反应。lac1编码一种油菜素类固醇C-22羟化酶,主要调控上部叶角。光敏色素A光感受器在阴暗处积累,通过26S蛋白酶体与转录因子RAVL1相互作用,促进其降解,从而减弱RAVL1对lac1的激活,降低油菜素内酯水平。这最终降低了密田上叶角。大规模田间试验表明,lac1在高密度条件下可提高玉米产量。为了快速将lac1引入到育种种质中,研究人员转化了一个单倍体诱导剂,并从20个不同的自交系中恢复了纯合子lac1编辑。所测双单倍体均获得智能冠状植物型结构。该研究为玉米品种提供了一个重要的目标和加速策略,其中lac1为玉米智能冠层的进一步工程提供了遗传基础。
  • 《超快激光诱导透明电介质内部纳米光栅的材料路线图》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2024-01-04
    • 近日,上海大学物理系超快光子学实验室戴晔教授团队与巴黎萨克雷大学ICMMO实验室Matthieu Lancry教授团队在国际著名学术期刊《Progress in Materials Science》上合作发表了题为“Materials roadmap for inscription of nanogratings inside transparent dielectrics using ultrafast lasers”的长篇综述文章。 该论文以“光与物质相互作用”中的“物质”(包括透明电介质、半导体和晶体等)为重点,对近二十年来超快激光诱导纳米光栅的形成机理进行了介绍和讨论,并在基于材料化学组分的基础上对其周期性、纳米孔尺寸、填充因子以及相关的“光学性能”(纳米光栅形成的起始/破坏的能量窗口、最大延迟量或者双折射)和“技术性能”(诱导纳米光栅的能量消耗、激光扫描速度以及热稳定性)进行了分析和总结。 近年来,超快激光脉冲在透明材料加工领域内已经成为一种非常优异的加工工具,它可以诱导出具有高自由度和高空间精度的2D/3D结构改性。由此,人们可以很大程度上根据激光辐照参数来诱导自组织结构、孔洞、纳米晶体等结构改性,以及进行3D折射率分析。紧聚焦飞秒激光与光学材料相互作用的最有趣和最富创新的现象之一就是产生自组织的纳米周期结构—纳米光栅,在该结构的基础上又发展出各类应用,包括双折射元件、几何相位光学元件、超稳定超高密度5D光存储技术和耐极端环境的光纤传感器,上述应用都利用了这种“光诱导结构”(事实上并非真正的结构自组织)的光学各项异性特点。 在透明材料内部激光辐照的区域,通过电子显微镜可以直接观察到纳米光栅,图1(a)给出了示例(在常见的二氧化硅玻璃内部),纳米光栅的平面通常垂直于激光偏振E。这些结构是由直径几微米的纳米平面组成,如图1(a)顶部。此外,图1(a)底部展示了纳米光栅形成时的等离子体密度和温度的局域分布,图中峰值温度已超过了二氧化硅结构的分解极限。 通过调节激光辐照的参数,研究者们已经在多种透明材料内部诱导并观察到了纳米光栅。研究最多的纳米光栅由熔融石英玻璃内部诱导的规则排列的纳米平面组成,每个平面都包含椭圆状的纳米孔(尺寸10至30 nm)。玻璃内部的氧化物分解(等离子体的纳米空化)导致这些纳米孔产生。这些排列的平面对激光偏振很敏感,拥有显著的光学双折射(导致较大光学延迟量(大于200 nm)),并具有可应用的光学带宽以及非凡的热稳定性。此外,这些纳米层表现出交替排列的高/低原子密度特征(如图1(b)),这也导致折射率的高/低分布(nG和npl)。最近的新进展表明,线偏振光诱导的纳米孔层还可以改变玻璃的结构对称性,导致非手性材料内产生光学手性结构,发展出激光直写手性光学元件的新方法。 上述所有光学特性已应用于2D/3D空间可变双折射光学器件、几何相位光学元件、高温光学传感器、长寿命5D光存储、微流体、芯片实验室器件以及偏振选择全息术。图1(c)给出了一个光学元件的例子,在中红外波段的重氧化物8% Ta2O5-BGG玻璃内通过激光制造了一个外径为2 mm的双折射菲涅尔梯度折射率(GRIN,graded-index)片。该菲涅尔波带片实现了2π的最大相位延迟,图1(c)底部图给出了其典型的主焦斑图。 直至最近,由纳米孔结构组成的自组织纳米光栅,被认为仅形成在少数材料(以硅基氧化物玻璃为主)中,因此其应用范围被限制在可见光和近红外光谱内。过去10年间,玻璃物理性质(熔化温度、热扩散率、吸收率等)对纳米光栅形成过程的影响也得到广泛的研究与合理的解释,研究人员发现不同的化学组分会影响纳米光栅的形成,但该方向缺乏较为系统的研究。。这篇综述归纳整理了国际上一些研究团队目前为止提出和发现的,纳米光栅形成与光学玻璃化学组分之间的内在规律,提出纳米光栅光学性质(纳米光栅能量窗口、光学延迟量和双折射)可以随玻璃组分而成比例地变化,光学延迟量与双折射成正比,并讨论了不同组分玻璃中纳米光栅的周期性、纳米孔尺寸、填充因子(FF,filling factor)以及相关的“技术性能”,后者代表纳米光栅形成的起始/破坏的能量窗口、最大延迟量或者双折射、诱导纳米光栅的能量消耗、激光扫描速度以及热稳定性,上述“技术性能”的评估有望推动超快激光制造技术在工业和实验室应用时玻璃的设计和激光参数的选择。 事实上,多种玻璃或者晶体中均观察到了超快激光诱导的纳米光栅存在,包括掺杂F、P、Ge、Cl、OH的二氧化硅玻璃、GeO2玻璃、SiO2–GeO2玻璃、TiO2–SiO2玻璃(ULE、Corning)、TeO2单晶、蓝宝石、Al2O3–Dy2O3二元玻璃、LNS甚至多组分铝硼硅酸盐或BGG玻璃。文章作者将文献中收集的结果绘制成折射率-玻璃退火温度图,如图2所示,折射率与退火温度均是玻璃材料的特性,也是玻璃制造商和用户参考的两个关键方面。文章作者以纳米光栅发展的材料路线为基础将发展历史分为三个阶段,1)2003至2014;2)2016至2020;3)2020至2023。 纳米光栅一般分为四类:第一种可在大部分氧化物玻璃(如SiO2)中观察到,同时也是首次观察到的类型,这一类型是以超快激光激发下氧化物分解形成的纳米多孔层为基础;第二种纳米光栅通常在半导体(GaP和Si)和氧化物晶体(Al2O3和TeO2)中被观察到,其实验结果表明激光诱导的条纹均整齐地排列并垂直于激光偏振方向;第三种类型是激光诱导周期性非晶化的现象(例如石英晶体中),该类型可能是由受激电子等离子体结合辐照引起的热效应的局部波动造成;最后一种类型是激光诱导玻璃内部周期性纳米结构,组成结构的纳米层出现了结晶化现象,其可见于LNS(LiNbO3晶体沉淀)玻璃、(33Li2O–33Nb2O3–(34-x)SiO2)–xB2O3非全等玻璃、20Na2O-80GeO2玻璃(全等玻璃组分Na2Ge4O9)、65Al2O3–35Dy2O3玻璃(全等玻璃组分Dy3Al5O12)。 关于纳米光栅形成的机制,受激等离子体引起的纳米空化过程被认为是导致空间有序纳米光栅形成(由于散射波干涉)的原因,其过程如下:第一步是介质中随机分布的晶格缺陷为该过程埋下种子;第二步是受激等离子体的形成和局部场增强效应导致椭球(扁)纳米等离子体热点(高电子等离子体密度或能量)的形成;第三步是辐照后自由电子和声子之间的能量转移引起纳米尺度范围的局部热分布;第四步是纳米等离子体热点和玻璃基体之间的温差会导致局部热膨胀,引起相应的应力产生。 文章作者通过总结课题组近期的成果,发现不同化学组分的玻璃中的纳米光栅具有不同的周期,大多集中在附近,更确切地说是,这些周期的变化有可能取决于Rudenko等人提出的不均匀性浓度Ci。玻璃化学组分不同,诱导的纳米孔大小会变化。例如具有较高SiO2含量的玻璃会呈现较小的纳米孔径,但在Al2O3–SiO2二元玻璃光纤芯中,其会随着Al2O3含量的增加而增加。此外,化学组分导致的玻璃粘度也会影响纳米光栅能量窗口,图4展示了玻璃网格中形成体与修饰体在纳米光栅形成中扮演了不同的重要角色。另外化学组分还能影响纳米光栅最大延迟量与双折射,例如在含SiO2或GeO2量高的玻璃中诱导的纳米光栅具有更高的延迟量。化学组分也影响纳米光栅“技术性能”(写入速度、最大延迟量及功率消耗),SiO2和GeO2因其性能优异而始终是释放其工业潜力的最佳候选玻璃。最后,化学组分还会影响纳米光栅热稳定性,热稳定性是评价光学器件实际应用潜力最直接的一环, Infrasil玻璃和N-BK7玻璃分别表现出最佳和最低的热稳定性,并且增加Al2O3含量有可能提高其热稳定性。 迄今为止,包括玻璃、晶体和聚合物等多类透明材料中均观察到了纳米光栅结构,这也暗示不同材料中诱导的纳米光栅均可用于不同的光学应用,研究纳米光栅的主要目的也是为了将这种激光诱导的亚波长周期结构应用于集成了不同功能的微纳光学元件中,图5展示了过去20年基于纳米光栅的一些典型光学元件。 图1(a)飞秒激光诱导玻璃内部纳米光栅结构图与等离子体密度与温度的空间分布。(b)飞秒激光诱导的纳米光栅结构示意图。(c)飞秒激光诱导菲涅尔波带片的光学显微照片与632 nm下的一级聚焦图像 图2不同玻璃的折射率(550 nm下测得)与玻璃退火温度之间的函数关系,(a)观察到纳米光栅的不同材料。(b)、(c)和(d)为BK7玻璃中纳米光栅的扫描电子显微镜图 图3氧化物玻璃中孔状纳米光栅形成机理的示意图 图4(a)不同铝硼硅酸盐和SiO2(Suprasil CG,取作参照)玻璃的粘度与温度之间的函数关系。(b)各种铝硼硅酸盐和商业玻璃的归一化纳米光栅能量窗口与温度间隔之间的函数关系 图5基于纳米光栅的光学应用。(a)双折射元件;(b)几何相位光学;(c)光学数据存储;(d)微/纳流体;(e)利用点对点技术压印在Al2O3–SiO2光纤熔融芯中的光纤布拉格光栅