《科学家发现造成基因组受损或突变的原因》

  • 来源专题:生物安全知识资源中心 | 领域情报网
  • 编译者: hujm
  • 发布时间:2018-12-12
  • 从开刀到化疗,从民间偏方到进口“神药”,人们谈癌色变,癌症患者及其家人煎熬难耐。时下,癌症靶向治疗药物备受推崇,这些药物的工作原理是什么?如何减轻或修复导致癌症的基因组损伤?

    近日,武汉大学基础医学院李枫教授团队和中国科学院北京基因组所吕雪梅研究员合作,在肿瘤学研究领域的国际权威杂志《癌症研究》上在线发表论文称,他们发现组蛋白去甲基化酶(KDM4B)在肿瘤细胞中扮演重要角色,或为癌症治疗找到一个全新靶点。

    一类随机“跳跃”的重复序列

    什么原因会造成基因组受损或突变,进而诱导癌症发生?

    研究表明,人的基因组中存在一类可以“跳跃”的重复序列,在漫长的历史演变中扩增或者改变位置。这种序列称为转座子,其中有一类RNA转座子,又称为逆转录转座子,以RNA为媒介进行转座,其复制方式通常被形容为“复制—粘贴”模式,即首先通过转录合成RNA中间体,再以该RNA为模板逆转录合成DNA并整合入基因组其他位置。

    转座子于基因组而言,是一把双刃剑。“跳跃”在基因组的进化中起到了重要作用,而随机无序的“跳跃”会破坏基因组,造成不稳定性,进一步损伤基因组,导致基因突变。

    通俗来说,这种“跳跃”好比在道路上开车,在恰当时间、合适位置进行正确超车,既可提高通行效率也有益于道路畅通。若在道路中随意穿行、强行超车、别车,就会造成道路拥堵,甚至交通瘫痪,此时,就得寻求外力帮助。逆转录转座子就是基因组中的“捣乱”分子,它们越活跃,基因组损伤越大。

    抑制KDM4B,减轻基因组损伤

    近年研究表明,逆转录转座子在肿瘤组织中拷贝数增加,而且更活跃,但其调控机制和生物学功能还不是很清楚。LINE-1就是其中一种,它在基因组中含量较大,平时是沉默状态,但在肿瘤细胞中却显得比较活跃。

    在武汉大学博士生向莹为第一作者、李枫教授和吕雪梅研究员为共同通讯作者的论文中,课题组发现KDM4B是LINE-1的转录调控因子,并驱动功能活跃的LINE-1在基因组中跳跃,引起DNA损伤以及基因组的不稳定,从而可能促进肿瘤的发生发展。研究还首次揭示了KDM4B对逆转录转座子的调控,并与基因组不稳定联系起来,从全新角度解释了KDM4B在肿瘤细胞中高表达的致病分子机理。

    KDM4B能催化“H3赖氨酸9三甲基化(H3K9me3)”这一组蛋白的去甲基化反应,在乳腺癌、结肠癌、卵巢癌、肺癌和前列腺癌中均有高表达,在肿瘤发生发展中所扮演重要角色。李枫课题组系统性分析了H3K9me3在全基因组元件中的分布,结果显示很大部分富集在LINE-1元件,而受KDM4B调控的H3K9me3主要分布在功能活跃的LINE-1上。

    进一步研究发现,过度表达KDM4B后的H3K9me3去甲基化,会导致LINE-1拷贝数、转座活性和DNA损伤程度增加,而使用KDM4B抑制剂,能减轻LINE-1介导的DNA损伤。

    卤水点豆腐,一物降一物。KDM4B通过激活LINE-1促进DNA损伤,反过来抑制KDM4B也可减少LINE-1介导的DNA损伤。

    李枫表示,他们团队的研究目标就是不断找寻癌症治疗的靶点,一个一个去攻克,而对KDM4B的功能抑制,就是又一个全新靶点。

    李枫介绍,世界范围内,癌症治疗的靶点已找到不少,靶向治疗药物也成为研究热点。目前,在不开刀、不化疗情况下,已有通过靶向治疗让人体肿瘤细胞逐步减少甚至检测不到的案例。

    下一步,他们将开展KDM4B抑制剂的动物试验、小鼠癌症模型验证,验证其作为靶标在肿瘤治疗中的可行性和安全性,为人体临床研究做准备。

  • 原文来源:http://www.bio1000.com/news/201812/115239.html
相关报告
  • 《科学家发现DNA能与泛素结合 对DNA修复意义重大》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:huangcui
    • 发布时间:2018-06-08
    • 2004年,诺贝尔化学奖授予了三名科学家,以表彰他们发现了“泛素介导的蛋白降解”这一重要生物学机制。上面这串文字虽然看似复杂,但却很好理解:如果把蛋白比作是细胞内的快递包裹,“泛素”就是包裹上的特殊二维码。当细胞“扫”到这个二维码,就会降解相应的蛋白,维持细胞内的动态平衡。 正是由于泛素化在蛋白质平衡中的作用太过关键,许多研究泛素的学者往往只将注意力集中在了蛋白质上。但来自哈佛大学医学院的魏文毅教授课题组则成功跳出了思维框架的限制。他们发现,DNA竟也能与泛素结合,且对于DNA的修复有重要意义。这一刷新认知的发现刊登在了最新一期的《科学》子刊《Science Signaling》上,并得到了《科学》官网的特别介绍。 他们是怎么发现泛素还和DNA有关的呢?这还要从DNA的修复说起。我们知道,DNA存储着我们的遗传信息,一旦DNA出现损伤而得不到及时修复,就有可能引起癌症等严重后果。目前,科学家们已经发现,在DNA断裂处,会出现多聚泛素链的积聚,而缺少这些泛素则会导致DNA损伤修复出现缺陷。 “然而到目前为止,泛素化被认为只参与蛋白修饰,以调控蛋白降解,或是蛋白与蛋白的相互结合,”研究人员们在论文里写道:“我们好奇多聚泛素链能否执行和蛋白无关的其他功能?如果能,它又是怎么起作用的?” 为了回答这些问题,研究人员们首先检测泛素蛋白能否与DNA直接结合。一系列实验表明还真能!而且,研究人员们还做出了一个非常有趣的发现:仅有一类多聚泛素链能与DNA结合。此类泛素链是由赖氨酸-63(K63)相连形成的。 这就引申出了下一个问题,为啥只有这一种泛素能结合DNA?它究竟对DNA有怎样的影响?后续研究表明,一旦K63相连的泛素链出现突变,削弱了与DNA的结合能力,DNA受损处的多聚泛素链水平就会下降,对DNA的修复产生不利影响。作者们在论文中指出,无论是在酵母细胞,还是在哺乳动物细胞里,此类泛素链对于DNA的及时修复有着不可或缺的作用。 在上文中我们提到,DNA是否能得到正确修复,决定了细胞是否健康。而不少癌症的病因,正是由于遗传信息上出现了错误。那么,K63相连的泛素链,和癌症是否有着关联呢?果不其然,在线上的数据库中,研究人员们从肺癌、黑色素瘤、以及乳腺癌的患者中找到了3个泛素基因里的突变,会影响到其与DNA的结合。这些发现也表明,最新得到阐明的泛素功能,可能与癌症等疾病相关。
  • 《美科学家发现改良CRISPR-Cas9可为耳聋带来精准基因疗法》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2019-07-08
    • 根据世界卫生组织的数据,全世界有4.66亿人患残疾性听力损失,相当于平均不到20人中就有1人丧失听力。遗传造成的听力损失还是新生儿最常见的残疾之一。基因编辑技术的问世,为治疗基因缺陷引起的遗传性耳聋带来了前所未有的希望。 最近,哈佛医学院和波士顿儿童医院的一支联合研究团队,利用优化的CRISPR-Cas9基因编辑系统,在耳聋小鼠模型上精确识别并修正内耳的致聋突变,帮助小鼠留住听力。这一概念验证的完成有望为众多遗传性耳聋患者带来安全的基因编辑疗法。研究成果日前发表在学术期刊《自然-医学》。 贝多芬小鼠 在我们的耳朵深处,也就是被称为内耳的部分,有一类“毛细胞”,它们分布在内耳表面,形状如一丛丛鬃毛,在听觉中发挥重要作用。 耳鼻喉科教授Jeffrey Holt和转化医学科学教授David Corey领导的研究小组过去发现,毛细胞要行使传导听觉信号的功能,离不开一种叫作TMC1的蛋白。当编码TMC1蛋白的基因发生突变,毛细胞会逐渐退化和死亡,导致听力丧失。某些遗传性耳聋患者在10~15岁开始逐渐失聪、到25岁左右完全丧失听力,正是因为TMC1基因突变。 科学家发现TMC1基因后,利用同样的突变构建了一种疾病模型小鼠,希望在此基础上研究疾病的治疗方法。这些基因突变小鼠会在出生一段时间后逐渐损失听力,到“青壮年”时完全失聪。科学家们给这种疾病模型起名为“贝多芬小鼠”,因为它们表现出的病程正与大音乐家贝多芬经历的进行性听力丧失相似。不过,顺便一提,贝多芬失聪的真正原因仍没有定论。 精确找到30亿分之一 和TMC1突变的耳聋患者一样,贝多芬小鼠体内的Tmc1基因仅仅出现了“一点”小错误:在来自父母双方的两个基因拷贝中,一个Tmc1出现突变就会致聋;而突变的DNA序列,仅仅是一个碱基发生了变化。 想要通过基因疗法修正DNA错误,用研究者的话说,意味着他们的基因编辑系统需要成功地在小鼠基因组的30亿个碱基字母中找出一个错误的字母。 为了精确定位贝多芬小鼠的错误基因拷贝,同时不影响正常基因,研究团队在经典CRISPR-Cas9系统的基础上进行改良,分别对引导分子gRNA和内切酶Cas9都做了优化。细胞实验中的初步检验表明,优化后的CRISPR-Cas9工具能在Tmc1基因的两个拷贝中准确区分突变版本和正常版本。 随后,研究人员通过腺相关病毒(AAV)载体将基因疗法递送到小鼠内耳。 DNA分析的结果显示,基因编辑活性只局限于在贝多芬小鼠的内耳细胞。而对正常小鼠做同样的“治疗”,没有在内耳细胞中检测到任何编辑变化,说明这种疗法没有干扰正常的基因功能,进一步说明了该工具的特异性。 研究人员在显微镜下观察了小鼠内耳的毛细胞。不出所料,在未经治疗的贝多芬小鼠中,毛细胞随着结构的恶化逐渐消失;相比之下,接受治疗后的小鼠,保留了正常数量的毛细胞,结构完整或近乎完整。 内耳毛细胞的结构得到挽救后确实能起到改善听力的作用吗?科学家们通过“听性脑干反应(ABR)”检查了小鼠的听力。这种测试方法检查不同强度声音刺激下的脑电波反应,意味着内耳中听觉细胞捕获到声音后把信号传到了大脑。这也是新生儿听力筛查的常用方法。 在不治疗的情况下,贝多芬小鼠通常在1个月大时就开始对高频声音反应降低,6个月大时完全失聪。相比之下,出生后不久就接受基因编辑疗法的小鼠,在2个月时与健康小鼠的听力几乎没有差别;到6个月大时,对低频声音的听力仍保持正常,有些甚至对高频声音的反应也接近健康小鼠。更令人鼓舞的是,有一部分经过治疗的贝多芬小鼠,在此后的近一年里保持了稳定的听力! 在人们非常关注的安全性上,这种疗法的表现也值得一提。科学家们给没有携带缺陷基因的小鼠施用疗法后,小鼠没有因此遭受任何听力损失。 在这项研究的最后,为测试该疗法在遗传性失聪患者上的治疗潜力,科学家们在一系列携带TMC1突变的人类细胞系上进行了实验。DNA分析显示,只有突变拷贝会被编辑,同一个细胞中的正常拷贝不会受影响。 从这些结果来看,研究团队带来的新CRISPR-Cas9工具“大大提高了标准基因编辑技术的有效性和安全性”。但他们也提醒,即便是像这样已经高度精确的基因编辑疗法,在用于人类之前仍有大量工作需要做。 由于这种方法能够靶向单个点突变,受益的将不仅仅是TMC1突变造成的遗传性耳聋患者,由其他听觉基因单突变造成的15种遗传性耳聋也都有望通过这种方法得到治疗。这样的进展无疑令人期待!“我们相信,这些结果打开了一扇大门,由基因单拷贝缺陷造成的一系列遗传疾病都可以在此基础上开发靶向治疗。”Holt教授说,“这真的是精准治疗。”