《香港理工大学等机构研究团队开发量子微处理器芯片,用于模拟大型且结构复杂的分子光谱》

  • 来源专题:计量基标准与精密测量
  • 编译者: 张宇
  • 发布时间:2024-08-27
  • 近日,香港理工大学的工程研究人员开发了一种新的量子微处理器芯片,用于模拟大型和复杂的分子结构。这种16量子比特的量子微处理器芯片能够对分子振动光谱进行高精度模拟,它克服了经典计算机的局限性并推动了量子化学应用的发展。这种尖端的量子微处理器可能会彻底改变材料科学和化学等领域,在模拟蛋白质结构和优化分子反应方面具有潜在应用。

    香港理工大学的工程研究人员已成功开发出一种量子微处理器芯片,用于模拟现实中的大结构和复杂分子的分子光谱,这是世界上首次取得这样的成就。准确捕捉这些量子效应需要开发精确的计算模型,模型中这些涉及量子叠加和纠缠的部分都是计算密集型的经典模型。

    该研究发表在《Nature Communications》期刊,题为“Large-scale photonic network with squeezed vacuum states for molecular vibronic spectroscopy(用于分子振动光谱的具有挤压真空状态的大规模光子网络)”的论文中。这项尖端技术使用了超出经典计算机能力的量子计算应用程序为解决复杂的量子化学问题铺平了道路。

    研究团队由LIU Ai-Qun教授领导,他是量子工程与科学领域的主席教授,也是量子技术研究所(IQT)的所长,全球STEM学者,新加坡工程院院士。与他一起的主要项目推动者是ZHU Hui Hui博士,电子与电气工程系的博士后研究员,也是研究论文的第一作者。其他合作者来自南洋理工大学、香港城市大学、北京理工大学、南方科技大学、微电子研究所以及瑞典的查尔默斯理工大学。

    Zhu博士的团队通过实验演示了一种大规模量子微处理器芯片,并引入了一种非常规的理论模型,该模型采用线性光子网络和压缩真空量子光源来模拟分子振动光谱。16量子比特量子微处理器芯片被制造并集成到单个芯片中。项目已经开发了一个完整的系统,包括用于量子光子微处理器芯片和电气控制模块的光-电-热封装的硬件集成、设备驱动程序的软件开发、用户界面和完全可编程的底层量子算法。量子计算机系统的发展为进一步的应用提供了基本的组成部分。

    量子微处理器可用于解决复杂任务,例如模拟大型蛋白质结构或优化分子反应,并显著提高速度和准确性。Zhu博士说:“我们的方法可以产生一类早期的实用分子模型,这些模拟的运行方式超越了经典计算模型的限制,并有望在相关量子化学应用中实现量子加速。

    量子技术在科学领域至关重要,包括材料科学、化学和凝聚态物理学。量子微处理器芯片作为一种极具吸引力的硬件平台,为量子信息处理提供了一种很有前途的技术解决方案。

    研究结果和由此产生的集成量子微处理器芯片为众多实际应用开辟了重要的新途径。这些应用包括解决分子对接问题和利用量子机器学习技术。刘教授说:我们的研究受到量子模拟技术对现实世界的潜在影响的启发。在我们工作的下一阶段,我们的目标是扩大微处理器的规模,并处理更复杂的应用,从而进一步促进使社会生产和行业进步。

    这个团队推动了量子技术的突破性发展,可以被认为是“游戏规则的改变者”他们利用量子计算微处理器成功地完成了分子光谱模拟这一极具挑战性的任务。他们的研究标志着量子技术及其潜在的量子计算应用的重大进步。

  • 原文来源:https://thequantuminsider.com/2024/08/22/quantum-microprocessor-chip-advance-could-boost-simulation-of-large-complex-molecular-structures/
相关报告
  • 《美国研究团队合作开发出新型高精度模拟芯片架构》

    • 来源专题:集成电路
    • 发布时间:2024-03-26
    • 许多复杂的物理系统可以用耦合的非线性方程来描述,这些方程必须在多个时空尺度上同时分析。然而,复杂系统的直接数值计算往往受到“维度诅咒”的阻碍,随着问题规模的增加,计算资源也需要成倍增加。尽管对精确、高性能计算解决方案的需求正在增长,但传统冯·诺依曼计算架构在速度、能耗和基础设施方面正达到极限。作为复杂物理系统建模的一种有效方法,存内计算绕过了冯·诺依曼体系结构固有的内存处理器瓶颈,具有诱人的发展前景。但是,存内计算受到读取噪声和写入可变性等问题阻碍,限制了高性能计算的可扩展性、准确性和精度。 2024年2月22日《科学》期刊报道,美国TetraMem公司、南加州大学和马萨诸塞大学阿默斯特分校研究团队开发出一种新型高精度模拟芯片架构,通过调整忆阻器实现了前所未有的精度,并设计出一种新的电路架构和编程协议,编程协议在最后一步将模拟计算结果转换为数字从而使用多个相对低精度的模拟设备(如忆阻器)有效表示高精度的数字,使得模拟设备的编程更加快速和精确,并使低精度模拟设备能够执行高精度计算。在集成的忆阻器片上系统上,研究团队通过实验证明了多个科学计算任务的高精度解决方案,实现了高达10-15的高精度解决方案,同时保持了与传统数字方法相比的巨大功率效率优势。 该新型高精度模拟芯片架构不仅适用于神经网络等传统低精度领域,还可扩展至其他存储技术领域,如磁性存储器和相变存储器[1]。 这种技术创新结合了数字计算的精度和模拟计算的节能和高速优势,不仅提高了模拟计算的效率和速度,还能为人工智能和机器学习等领域带来更多应用可能性。 [1] Wenhao Song, Mingyi Rao, Yunning Li, et al. Programming memristor arrays with arbitrarily high precision for analog computing [J]. Science, 2024, 383(6685):903-910. https://www.science.org/doi/10.1126/science.adi9405
  • 《美国等联合科研团队开发“脾脏芯片”,深度模拟镰状细胞病》

    • 来源专题:生物安全
    • 编译者:闫亚飞
    • 发布时间:2023-03-04
    • 据中国科技网2月1日消息,美国麻省理工学院、新加坡南洋理工大学、法国巴斯德研究所的研究人员开发出一种微流控设备“脾脏芯片”,可模拟急性脾隔离现象。该设备采用模拟内皮间缝隙的S芯片和模拟巨噬细胞的M芯片两个模块来模拟脾的过滤功能,同时还有一个气体通道来控制各芯片的氧气浓度,以模拟人体内条件。研究发现,在20%的正常氧条件下,镰状细胞在缝隙处出现部分堵塞,在2%的氧水平下,缝隙很快被完全堵塞,再次提高氧气水平后,堵塞消失。该设备可用于查看细胞在控制氧气水平的情况下的流动情况,对镰状细胞病患者的健康红细胞和镰刀状红细胞进行研究。相关研究成果发表于《美国国家科学院院刊》期刊。