许多复杂的物理系统可以用耦合的非线性方程来描述,这些方程必须在多个时空尺度上同时分析。然而,复杂系统的直接数值计算往往受到“维度诅咒”的阻碍,随着问题规模的增加,计算资源也需要成倍增加。尽管对精确、高性能计算解决方案的需求正在增长,但传统冯·诺依曼计算架构在速度、能耗和基础设施方面正达到极限。作为复杂物理系统建模的一种有效方法,存内计算绕过了冯·诺依曼体系结构固有的内存处理器瓶颈,具有诱人的发展前景。但是,存内计算受到读取噪声和写入可变性等问题阻碍,限制了高性能计算的可扩展性、准确性和精度。
2024年2月22日《科学》期刊报道,美国TetraMem公司、南加州大学和马萨诸塞大学阿默斯特分校研究团队开发出一种新型高精度模拟芯片架构,通过调整忆阻器实现了前所未有的精度,并设计出一种新的电路架构和编程协议,编程协议在最后一步将模拟计算结果转换为数字从而使用多个相对低精度的模拟设备(如忆阻器)有效表示高精度的数字,使得模拟设备的编程更加快速和精确,并使低精度模拟设备能够执行高精度计算。在集成的忆阻器片上系统上,研究团队通过实验证明了多个科学计算任务的高精度解决方案,实现了高达10-15的高精度解决方案,同时保持了与传统数字方法相比的巨大功率效率优势。
该新型高精度模拟芯片架构不仅适用于神经网络等传统低精度领域,还可扩展至其他存储技术领域,如磁性存储器和相变存储器[1]。
这种技术创新结合了数字计算的精度和模拟计算的节能和高速优势,不仅提高了模拟计算的效率和速度,还能为人工智能和机器学习等领域带来更多应用可能性。
[1] Wenhao Song, Mingyi Rao, Yunning Li, et al. Programming memristor arrays with arbitrarily high precision for analog computing [J]. Science, 2024,
383(6685):903-910. https://www.science.org/doi/10.1126/science.adi9405