《宁波材料所在二氧化碳电还原领域取得新进展》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2020-09-10
  • 二氧化碳(CO 2 )电还原技术可以在温和条件下,使用清洁电能将CO 2 转化为碳氢燃料,在解决由于间歇性问题造成的新能源弃电浪费的同时,还可以缓解温室气体CO 2 造成的环境问题并获得高附加值的碳氢化合物。CO 2 电还原技术的核心是在阴极进行的CO 2 还原反应(CO 2 RR),即以水和CO 2 为原料,在还原电位下转化并获得一氧化碳、甲烷、甲酸、甲醇、乙烯、乙醇、乙酸等产物。然而,CO 2 拥有一个高度稳定的化学结构,不易发生化学反应,需要开发高性能的CO 2 RR电催化剂来加速该反应的进行。在实际应用中,CO 2 RR电催化剂需兼顾催化剂成本、产品选择性、生成速率和长期耐用性等多方面的要求。   

    相较于金属基电催化剂,碳材料拥有众多优异的特性,如储量丰富、多孔结构、结构稳定以及环境友好。然而,完整的碳芳香环化学活性比较惰性,难以用作催化材料。缺陷工程可以有针对性地将缺陷引入到碳材料中,打破芳香环中的电子对称性并调整碳原子的电荷密度和自旋密度,从而产生催化活性中心。拓扑缺陷具有局部非对称的电子结构,可以调节碳材料的本征催化活性。然而,由于较高的缺陷形成能量,在碳材料中引入高浓度的拓扑缺陷还是一个难点。   

    最近,中国科学院宁波材料技术与工程研究所属新能源所陈亮研究员团队提出了一种新颖且有效的氨(NH 3 )热处理策略来获得富含拓扑缺陷的三维多孔碳材料(见图1)。在较低处理温度下(<750℃),氨气热处理通常用于对碳材料进行氮掺杂,来获得氮掺杂的碳材料。陈亮团队发现,提升氨热处理的温度,可以诱导NH 3 去除N掺杂三维多孔碳材料中的吡咯-N和吡啶-N掺杂原子,从而可以产生高浓度的拓扑缺陷。通过反应分子动力学模拟,并结合近边X射线吸收精细结构表征(NEXAFS)和投影态密度分析(LDOS),研究人员发现碳结构中的N原子被诱导去除后会产生活化的低配位碳原子,然后通过局部的结构重排产生五元环、585等拓扑缺陷。如图2所示,富含拓扑缺陷的三维多孔碳材料在0.1M KHCO 3 溶液中CO 2 RR反应电位位于-0.6和-0.7 V vs. 可逆氢电极(RHE)时,其反应电流密度分别达到2.84 mA cm -2 和4.29 mA cm -2 ,对CO反应物的法拉第效率分别高达95.2%和91.9%,表现出优异的CO 2 RR电催化活性。此外,在反应电位为-0.6 vs. RHE时,经过24个小时的连续反应测试,发现一氧化碳的法拉第效率维持在90%以上,且反应电流密度无明显的下降。基于密度泛函理论计算进一步证实了在五元环边缘位点上进行CO 2 RR的自由能能垒最低,是促进CO 2 RR进行的主要活性中心。该研究不仅为碳材料的缺陷工程提供了新的途径,而且加深了对碳缺陷进行CO 2 RR电催化机制的深入认识。   

    以上工作近期以“Ammonia Thermal Treatment toward Topological Defects in Porous Carbon for Enhanced Carbon Dioxide Electroreduction”为题发表在 Advanced Materials 期刊上( Adv. Mater . 2020, 2001300. https://onlinelibrary.wiley.com/doi/10.1002/adma.202001300 )。博士研究生董岩为第一作者,张秋菊研究员与田子奇研究员完成文中的计算工作,陈亮研究员与苏建伟博士为论文共同通讯作者。

    该工作得到了中国科学院基础前沿科学研究计划“从0到1”原始创新项目(ZDBSLY-JSC021)、国家自然科学基金(51872306)、宁波市创新团队项目(2015B11002、2016B10005)、浙江省自然科学基金青年项目(LQ19B030002)以及宁波市“科技创新2025”重大专项(2019B10046)的大力支持,其中同步辐射实验得到了中科大合肥同步辐射国家实验室闫文胜研究员的大力支持。

相关报告
  • 《宁波材料所在气体吸附分离材料研究中取得新进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:姜山
    • 发布时间:2017-07-25
    • 金属有机框架材料(MOF)是一类新型的有机-无机杂化多孔晶体材料,具有高比表面积、孔容、孔隙率和孔径可调等特性,在氢气、甲烷和二氧化碳等气体的吸附分离领域受到了广泛关注。近年来很多MOF或MOF/聚合物复合气体分离膜不断的被设计与开发出来,然而这些膜材料很难同时兼有气体的高渗透性和高选择性,而且以氧化铝陶瓷管为载体制备的MOF基分离膜很容易产生缺陷,从而很难起到分离的效果,这些缺点都使得MOF基分离膜无法得到实际应用。最近宁波材料所所属新能源所科研人员首次将MOF与有机硅烷复合,成功设计与制备出了一系列具有高通量及高选择性的复合气体分离膜。 图1. MOF/有机硅复合膜示意图及其对H2、CO2与CH4等气体的分离性能 在前期研究中,林贻超博士与陈亮研究员分析与总结了不同MOF对于CO2与CH4的选择吸附特性(Advanced Energy Materials 2017, 7, 1601296),并基于此选择了CAU-1、MIL-53-NH2和ZIF-8等三种代表性MOF用于气体复合分离膜的制备。在本研究中,陈亮研究员、孔春龙研究员与美国德克萨斯大学陈邦林教授合作,通过水解1,2-双(三乙氧基硅基)乙烷制备得到有机硅烷, 利用有机硅烷具有良好热稳定性、可调孔径以及与氧化铝陶瓷管之间强相互结合力等特性,与MOF材料复合制备了超薄(<200 nm)杂化膜。研究表明该类MOF复合膜的气体分离性能直接取决于MOF结构的气体吸附性能,其中ZIF-8复合膜拥有优异的H2选择分离性能,在常温条件下H2/CH4 (1:1混合气)选择性可达到26.5,同时H2通量可保持在1.06×10 -6 mol?m -2 ?s -1 ?Pa-1 ,而MIL-53-NH2复合膜则拥有优异的CO2选择分离性能,其CO2/CH4(1:1混合气)选择性可达到18.2,CO2的通量仍然保持在1.44×10 -7 mol?m -2 ?s -1 ?Pa-1。相关研究成果以“Nanoscale MOF/Organosilica Membrane on Tubular Ceramic Substrate for Highly Selective Gas Separation”为题发表在Energy & Environmental Science(2017, DOI: 10.1039/C7EE00830A)上。 上述工作得到了国家基金委面上项目、浙江省自然基金委相关人才计划、中国科学院青年创新促进会与宁波市创新团队的大力支持。
  • 《大连化物所单原子催化剂用于二氧化碳转化研究取得新进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2019-02-19
    • 大连化物所航天催化与新材料研究室黄延强研究员、杨小峰副研究员团队在单原子催化剂的设计合成及催化应用策略研究方面取得新进展,采用含氮有机聚合物材料为载体,制备出类均相铱活性中心的单原子催化剂,该催化剂在二氧化碳加氢反应中表现出优异催化性能。相关研究成果以全文的形式于Cell旗下的Chem杂志上发表。   “单原子催化”概念由张涛团队、清华大学李隽教授及美国亚利桑那州立大学刘景月教授于2011年共同提出,迅速成为多相催化领域的研究前沿,并有望成为关联多相与均相催化的桥梁。然而,催化剂载体表面的不均匀性对单原子催化剂的形成、稳定性能、催化性能都有极大的限制。为此,黄延强团队提出借鉴均相催化模型,从分子水平构建载体负载单原子活性中心,从而不仅可获得稳定的单原子活性中心,而且可以实现单原子催化剂的“准均相”应用。     CO2催化加氢合成甲酸是一个原子经济性的反应,生成的甲酸不仅是重要化工原料,还可作为一种理想的液态储氢材料。在前期探索CO2催化活化转化的研究认识基础上(Nat. Commun., ACS Catal., ChemSusChem),该团队利用酰胺化反应简捷、高效地制备出含有吡啶-酰胺基团的多孔有机聚合物,并将其作为载体负载单原子铱催化剂以实现活性中心的稳定性,该催化剂在二氧化碳加氢制甲酸反应中表现出优异的催化活性,解决了多相催化在该反应中一直面临的活性不高的难点。同时,科研人员通过球差电镜、XPS、XAS等表征实验,结合理论计算催化活性中心结构及光谱模拟,对Ir单原子催化剂的结构进行了精确解析,确认该单原子催化剂具有类均相活性中心,且具有与均相催化过程相同的催化反应机理。该研究为二氧化碳的高值化利用、设计新型单原子催化剂及应用提供了新思路。   以上研究得到了国家科技部重点研发计划、中国科学院战略性先导科技专项、国家自然科学基金项目、中国科学院青年创新促进会项目等资助。同时,这也是献礼大连化物所七十周年所庆文章之一。