《宁波材料所在气体吸附分离材料研究中取得新进展》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 姜山
  • 发布时间:2017-07-25
  • 金属有机框架材料(MOF)是一类新型的有机-无机杂化多孔晶体材料,具有高比表面积、孔容、孔隙率和孔径可调等特性,在氢气、甲烷和二氧化碳等气体的吸附分离领域受到了广泛关注。近年来很多MOF或MOF/聚合物复合气体分离膜不断的被设计与开发出来,然而这些膜材料很难同时兼有气体的高渗透性和高选择性,而且以氧化铝陶瓷管为载体制备的MOF基分离膜很容易产生缺陷,从而很难起到分离的效果,这些缺点都使得MOF基分离膜无法得到实际应用。最近宁波材料所所属新能源所科研人员首次将MOF与有机硅烷复合,成功设计与制备出了一系列具有高通量及高选择性的复合气体分离膜。

    图1. MOF/有机硅复合膜示意图及其对H2、CO2与CH4等气体的分离性能

    在前期研究中,林贻超博士与陈亮研究员分析与总结了不同MOF对于CO2与CH4的选择吸附特性(Advanced Energy Materials 2017, 7, 1601296),并基于此选择了CAU-1、MIL-53-NH2和ZIF-8等三种代表性MOF用于气体复合分离膜的制备。在本研究中,陈亮研究员、孔春龙研究员与美国德克萨斯大学陈邦林教授合作,通过水解1,2-双(三乙氧基硅基)乙烷制备得到有机硅烷, 利用有机硅烷具有良好热稳定性、可调孔径以及与氧化铝陶瓷管之间强相互结合力等特性,与MOF材料复合制备了超薄(<200 nm)杂化膜。研究表明该类MOF复合膜的气体分离性能直接取决于MOF结构的气体吸附性能,其中ZIF-8复合膜拥有优异的H2选择分离性能,在常温条件下H2/CH4 (1:1混合气)选择性可达到26.5,同时H2通量可保持在1.06×10 -6 mol?m -2 ?s -1 ?Pa-1 ,而MIL-53-NH2复合膜则拥有优异的CO2选择分离性能,其CO2/CH4(1:1混合气)选择性可达到18.2,CO2的通量仍然保持在1.44×10 -7 mol?m -2 ?s -1 ?Pa-1。相关研究成果以“Nanoscale MOF/Organosilica Membrane on Tubular Ceramic Substrate for Highly Selective Gas Separation”为题发表在Energy & Environmental Science(2017, DOI: 10.1039/C7EE00830A)上。

    上述工作得到了国家基金委面上项目、浙江省自然基金委相关人才计划、中国科学院青年创新促进会与宁波市创新团队的大力支持。

相关报告
  • 《宁波材料所在PVDF油水分离膜材料方面取得系列新进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-04-26
    • 随着我国经济的快速发展,大量的含油污水被排放,同时海洋原油泄漏事件频发,对生态环境和人类的健康造成了严重威胁。传统油水分离方法主要包括气浮法、离心分离法、吸附和燃烧等,但均存在效率低、成本高、应用范围窄等缺点。超浸润分离膜由于具有结构可控性好、分离效率高和分离精度高的优点,目前成为油水分离领域的研究热点。近期,中国科学院宁波材料所刘富研究员团队(先进功能膜)在高性能聚偏氟乙烯(PVDF)油水分离膜方向取得了一系列新成果。   1)PVDF瞬时催化及油水分离膜。针对复杂体系的油水分离问题,以机械性能和热稳定性能优异的聚偏氟乙烯(PVDF)为基膜,制备得到具有微纳米多级组装结构的PVDF-AuNPs微反应器分离膜。首先利用聚多巴胺作为膜表面“功能涂层”,对PVDF基膜进行初步修饰,然后将AuNPs微球通过动态过滤的方法负载到PVDF的指状孔内,形成微反应器。所得膜能够对含有硝基苯酚的水包油复杂体系,实现瞬时的硝基苯酚催化降解和油水分离。该方法对于将油水分离膜应用于实际含油废水处理,起到了重要的推动作用。相关工作已经发表于Chemical Engineering Journal, 2018, 334,579,王建强副研究员和吴紫阳为共同第一作者,刘富研究员为通讯作者。   2)具有超稳定刚性浸润表面的柔性PVDF油水分离膜。针对通常聚合物微孔膜的表面微纳结构不稳定、在化学腐蚀及物理损伤下易蠕变及衰减的问题,通过仿生植物根系固定土壤模型,利用微孔PVDF膜表面的微纳结构限域固定TiO2纳米粒子,制备了具有刚性界面TiO2界面的柔性PVDF微孔膜。所得膜具有优异的稳定性,能够抵抗极端物理损伤(液压、手指擦拭、液氮淬火后砂纸磨擦)、高温和苛刻的化学腐蚀(强酸、强碱、强氧化剂次氯酸钠),并且能够连续有效分离含有表面活性剂的油包水乳液。在错流模式下,通过负载超亲水纳米TiO2粒子制备的PVDF膜,可实现水包油乳液的连续分离(通量达1700 ,分离效率>96%)(如图3)。 相关工作已经发表在Scientific Reports, 2017, 7: 14099,熊竹副研究员和林海波为共同第一作者,刘富研究员为通讯作者,文章发表后受到了同行的广泛关注,该论文是2017年Scientific Reports期刊阅读量最多的前100篇文章之一。   3)超大通量静电纺丝PVDF油水分离膜。除了油水废液的复杂性和膜界面稳定性的制约,油水分离膜往往也受限于膜的低通量和易污染性。针对该问题,团队采用静电纺丝技术,通过将静电纺丝和静电喷涂相结合,制备得到了具有超高通量的PVDF纳米纤维油水分离膜,具有独特的微米级纤维及纳米级微球复合的结构。将该膜应用于高粘度的十甲基环五硅氧烷包水体系时,渗透系数高达88166±652 (分离效率>99%),远高于已报道数据。该方法制备过程简单,无需复杂的表面改性过程,是一种适宜工业化生产的新方法。相关工作已经发表在Journal of Materials Chemistry A, 2018, 6, 7014-7020。浙江理工大学的吴金丹博士和硕士生丁雅杰是论文的共同第一作者,王建强副研究员、浙江理工大学王际平教授和刘富研究员为该工作的共同通讯作者。   上述系列研究工作受到了国家重点研发计划(2017YFB0309600)、国家自然科学基金(5161101025、51475449、51703233)、中国科学院青促会(2014258)和宁波市创新团队(2014B81004)等项目的资助支持。
  • 《宁波材料所在Janus微孔正渗透膜领域取得研究进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2019-02-21
    • 正渗透作为一种渗透压驱动的膜分离技术,具有低能耗、低污染等优势,被广泛应用于海水淡化、水处理、压力阻尼渗透发电以及可控药物释放等领域。正渗透技术的核心在于正渗透膜以及汲取液的设计与合成。理想的正渗透膜应该具备高渗透性、高选择性、高的耐污染能力以及低的结构因子来降低浓差极化能力。   目前,正渗透膜材料主要有不对称醋酸纤维素膜和聚酰胺超薄复合膜(TFC),聚酰胺超薄复合膜主要由多孔支撑层(如无纺布+聚砜超滤膜)和界面聚合形成的聚酰胺致密层组成。其传质机理主要有溶解扩散、优先吸附-毛细孔流以及氢键理论等。为了提高渗透通量和选择性,前人在界面聚合超薄复合膜的制备过程中,采用了多种纳米材料进行结构调控,如氧化石墨烯、碳纳米管、水通道蛋白、金属有机框架材料,但是基于上述传质理论的不对称致密膜在正渗透过程中,仍然存在浓差极化和膜污染问题,导致其渗透通量和盐截留率低。因此如何通过新型膜材料的设计,并提出新的渗透传质机制,是国际上正渗透领域面临的挑战。   中国科学院宁波材料技术与工程研究所刘富研究员团队提出了一种不对称浸润性Janus微孔膜用于正渗透过程,水通量可达到274.2Lm-2h-1,反向盐通量为1.65gm-2h-1,水通量Jw及水盐比通量Jw/Js远高于目前界面聚合制备的聚酰胺TFC膜。通过在超亲水醋酸纤维膜表面利用静电纺丝构筑疏水聚偏氟乙烯纳米纤维层,制备的不对称浸润性Janus微孔膜(CA/PVDF),在渗透传质过程中表现出二极管流体特性,其聚偏氟乙烯纳米纤维疏水侧的空气层能够有效抑制汲取液中盐溶质的反向扩散,提高选择性,而其另一侧的醋酸纤维素亲水膜可通过导流减少表面流体对超疏水膜的剪切冲击,起到保护空气层的作用,此外还具有抗污染和支撑作用。疏水纳米纤维层的厚度(1.7~9.1μm)可通过静电纺丝的时间来进行可控调节。在渗透压的作用下,原料液侧的水分子的运动为从Janus膜的亲水侧到疏水侧的定向运动,而汲取液中的盐离子被疏水侧的空气层有效阻隔,Janus膜的朝向相反时,原料液中的水分子的运动受到限制,运动规律类似于流体二极管。疏水膜的厚度对于渗透通量和反向盐通量的影响至关重要,降低厚度,提高汲取液中盐的浓度,渗透通量和反向盐通量都相应提高。当Janus膜的疏水空气层被浸润破坏后(如运行2小时),水通量急剧下降,反向盐通量急剧上升。进一步将膜进行简单干燥后,水通量和反向盐通量完全恢复,具有多次循环稳定性。前期研究发现上述传质过程存在蒸发冷凝以及对流扩散。上述工作发表在Environmental Science & Technology Letters, 2019,6,79-85,并得到澳大利亚麦考瑞大学Shuaifei Zhao博士(共同通讯作者)和澳大利亚新南威尔士大学Chuyang Y. Tang教授的合作支持。   进一步,刘富研究员团队通过相转化法制备了超亲水PVDF微孔膜,并利用其微纳结构固定负载超疏水氟化二氧化硅纳米粒子,制备了Janus膜(PVDF/F-SiO2),用于正渗透过程,其不对称浸润结构可以有效降低浓差极化,实现水分子的单向传质,以及对盐离子的反向抑制。不同于上述的蒸发冷凝机制,由于纳米级亲水通道是贯穿于膜中,但由于表面浸润性差异,具有单向传递特性,其渗透系数可达到2.2Lm-2h-1bar-1,比盐通量为0.007gL-1。上述工作发表在Journal of Materials Chemistry A,2019,7,632-638。   上述工作揭示了Janus微孔膜用于正渗透的新型传质过程及传质机理,其优异的渗透性能表明Janus微孔膜在海水淡化、水处理及压力阻尼渗透发电领域具有应用前景。   上述工作得到了国家自然科学基金面上项目(51673209)、国家自然科学基金委与香港研究资助局联合项目(5161101025、N_HKU706/16)以及宁波市科技局2014B81004、2017C110034的支持。