《欧盟发布《工业5.0:迈向更可持续、更具弹性和以人为本的工业》报告》

  • 来源专题:科技政策与战略动态监测服务
  • 发布时间:2021-03-19
  • 2021年1月7日,欧盟委员会发布《工业5.0:迈向更可持续、更具弹性和以人为本的工业》报告。报告指出,工业是欧盟实现绿色和数字化双重转型的主要驱动力之一,“工业5.0”通过使工业生产尊重地球的边界并将工人的福祉置于生产过程的核心,工业可以实现超越就业和经济增长的社会目标。“工业5.0”将使工作场所更具包容性,建立更具弹性的供应链并采用更可持续的生产方式。报告描述了“工业5.0”的主要组成部分以及对工人和工业本身带来的好处,并列举了与“工业5.0”相关的正在进行和已完成的研究与创新项目。

相关报告
  • 《欧盟委员会发布欧洲能源联盟进展评估报告》

    • 来源专题:能源情报网信息监测服务平台
    • 发布时间:2021-04-11
    • 2020年10月14日,欧盟委员会发布《能源联盟进展2020》报告,总结了欧洲能源联盟战略框架下欧盟及其成员国在可再生能源、能效、能源安全、能源市场、研究创新五方面的举措和进展。报告为成员国《国家能源与气候计划》的实施以及能源相关投资和改革如何促进经济复苏提供了指导。关键要点如下: 一、欧洲能源联盟进展 1、碳减排 欧盟已经制定了到2050年实现碳中和的目标,欧盟委员会已提出了一项欧洲气候法案,将这一目标以立法形式确立并提出了实现措施。目前,欧盟已经超额完成了到2020年温室气体排放比1990年减少20%的目标,欧盟27国的温室气体排放量处于1990年以来的最低水平,其主要原因是能源供应相关排放的减少。然而,在新冠疫情爆发前的5年中,国际航空排放持续增加,同期交通运输总排放也逐年增加。自2010年以来,欧盟燃料供应的平均温室气体排放强度有所改善,但仍需采取进一步行动,以确保2020年实现《燃料质量指令》设定的6%减排目标。 过去5年,欧盟碳排放交易体系(ETS)涵盖活动的排放量显著减少,尤其是电力部门。2019年,欧盟ETS所涵盖的工业和电力活动总排放量同比下降9.1%,其中电力部门温室气体排放量大幅减少了近15%,工业排放则下降了2%,是欧盟ETS第三阶段(2013-2020年)迄今为止的最大降幅,但欧洲经济区内航空排放量温和增长近1%。2019年1月开始运行的市场稳定储备机制已经大大降低了排放配额的盈余,预计2020年拍卖配额数量将减少约3.75亿欧元,2021年将会继续减少,欧盟将在2021年修订ETS的同时对市场稳定储备机制进行首次审查,以确保实现至少55%的温室气体减排目标。另外,除了新冠疫情导致2020年初欧盟碳价短暂下跌外,2019年1月至2020年6月欧盟碳价稳定在24欧元左右,欧盟委员会将尽快发布一系列气候报告,包括温室气体排放、欧盟碳市场和燃料质量的详细信息。 2、可再生能源 2018年,欧盟可再生能源在终端能源消费总量中占比增至18%,有12个成员国的进展符合其国家目标,但仍有5个成员国进展较为缓慢。总体而言,欧盟有望实现其2020年可再生能源目标。对可再生能源的投资越来越受市场因素驱动,成员国越来越倾向于通过竞争性招标来支持可再生能源发展,并确保按照国家援助和欧盟内部能源市场规则的要求,将可再生能源整合到电力市场。欧盟鼓励成员国探索使用合作机制的所有方案,包括统计数据转移,以确保实现其2020年可再生能源目标。欧盟委员会准备支持成员国之间缔结统计协定和开展相关对话,包括通过正在筹备的欧盟可再生能源发展平台。2020年后,欧盟将全力推进成员国对2030年可再生能源目标的贡献,包括通过2021年发布《可持续增长战略》(Sustainable Growth Strategy)以及欧洲旗舰计划“Power up”以加快可再生能源的开发和使用。最近商定的欧盟可再生能源融资机制允许成员国投资可再生能源项目,以换取参与成员国的统计归属。此外还将修订相关的国家援助指南,特别是《国家环境和能源援助指南》,以加快可再生能源的部署。 3、能效 欧洲能源联盟已经认识到能效在实现所有气候和能源目标方面的关键作用,并将“能效第一”原则写入相关法案。2018年,欧盟终端能源消费同比上升0.2%达到11.24亿吨油当量,比2005年下降了5.9%,比2020年目标高出3.5%;一次能源消费同比下降0.6%达到15.52亿吨油当量,比2005年下降了9.8%,比2020年目标高出4.6%。由于经济活动增长推动能源消费上升,成员国实施的新政策和措施不足以降低能源消费并使其回到实现2020年目标的轨道上。欧盟能效领域创造的直接就业机会从2000年的24.4万个稳步增加到2017年的96.4万个,年均增速(17.4%)超过了其他经济体(0.5%)。 2020年的部分数据表明,新冠疫情危机对欧盟能源需求产生了重大影响。即使这有助于实现2020年的能效目标,也不会导致能源消费的结构性下降。一旦经济复苏,预计会出现反弹效应。欧盟计划通过2021年《可持续增长战略》以及欧洲旗舰计划“Renovate”,提高公共和私人建筑的能源和资源效率,并通过智能家居和智能电表推动数字化发展,帮助欧洲从新冠疫情危机中复苏。欧盟委员会正在制定更多指导方针,并将“能效优先”原则纳入所有相关政策提案,如欧盟能源系统集成战略、“翻新浪潮”计划和即将修订的跨欧洲能源网络。成员国还需要在经济规划、政策和投资决策中考虑能效措施。 4、能源安全 尽管新冠疫情危机对能源需求造成了巨大的压力,但欧盟成员国确保了能源基本业务的连续性。欧洲能源联盟关于能源安全的立法框架,如《电力部门风险防范条例》和《天然气供应安全条例》,在应对危机影响方面发挥了重要作用。欧盟立法机构成立的专家组在促进跨境协调,以及成员国、系统运营商和能源部门相关机构之间的广泛合作和信息共享方面发挥了关键作用。作为后续行动,欧盟委员会正在评估能源供应的潜在脆弱性和提高能源技术关键供应链恢复能力的备选方案。欧盟新出台的《欧盟安全联盟战略》包括了一项加强关键能源基础设施恢复能力和网络安全的建议,欧盟委员会还开始制定网络法规,以确保跨境电力流动的网络安全。 电力部门方面,《风险防范法规》的实施确保各成员国能够相互合作,以预防、防范和缓解电力危机。此外,欧洲输电系统运营商网络(ENTSO-E)应用两种新方法能够首次确定最相关区域的电力危机情景,并可根据往年夏季情况进行季节充足性评估。欧盟委员会还通过了关于成员国在预防和管理危机方面相互提供援助时给予公平补偿的建议。 基础设施方面,欧盟制定了电力互联能力目标,一些成员国还没有达到2020年10%的互联目标。共同利益项目可以促进成员国的脱碳努力,并为欧洲的氢能市场奠定基础,这些措施可能涉及“互联欧洲”设施以及“促进经济复苏及其韧性增强基金”(Recovery and Resilience Facility)的旗舰行动Power up的支持,以通过现代化电网和增强互联性整合清洁技术和可再生能源。欧盟同时也在努力确保对现有的互联和数字平台进行充分利用,实施与内部电力市场设计相关的规定,使欧洲电力交易效率大幅提高。 天然气供应安全方面,成员国已经制定了预防措施和应急计划,包括减轻天然气供应中断影响以及确定国家和区域级的风险。欧盟委员会将继续帮助成员国执行团结原则,以确保即使在严重的天然气危机情况下,也能保障所有成员国的天然气供应。欧盟委员会已经评估了海上石油和天然气作业安全性的相关现行立法经验,并将于年底向欧洲议会和理事会提交报告。 核安全保障方面,欧盟已建立涵盖整个核能生命周期的全面框架,包括对乏燃料和放射性废物的管理。欧盟委员会将继续监测这一框架在成员国的实施情况。欧盟还将继续在欧盟范围内促进核能安全发展,特别是在运营或计划建造核电站的国家,主要措施包括支持进行压力测试和采取后续行动,以促进合适和透明的执行过程。欧洲理事会特别强调了确保白俄罗斯Ostrovets核电站的核安全和环境安全的重要性。 5、内部能源市场 欧盟实施了一些重要举措加强内部电力和天然气市场,尽管取得了良好的进展,但还需做出更多努力。 在电力方面,欧洲清洁能源一揽子计划,尤其是2019年通过的新电力市场设计规则,为建立以可再生能源为主的能源市场铺平了道路。数据互操作性相关的实施法案有助于促进用户和新服务供应商参与市场,《电力法规》通过最大程度利用电力互连的规则来确保电力市场的进一步整合,这些规则将促进跨境贸易,使能源资源在整个欧盟得到更有效的利用。欧盟正实施一套全面的技术法规(网络法规),取得了积极成果。自2016年以来,各成员国零售电价逐渐接近,但仍存在较大差异,零售电价仍由监管机构制定,而不是由市场规律决定。税收对最终能源价格,特别是电力价格有着重大影响,这可以为推进特定能源品种的使用创造条件,成员国可以综合考虑税收影响以确保价格信号的变化能够促进清洁、公平的能源转型。欧盟能源税指令的一些税收减免实际是对化石燃料的补贴,与《欧洲绿色协议》的目标不符,对其的修订正在改进这些问题。 在天然气方面,欧盟内部市场已取得良好进展。欧洲天然气中心交易量一直持续增长到2020年,2020年第一季度仍同比增长了32%,不同天然气来源的连通性和获取途径也在不断改善。不过,2019年欧洲市场的天然气价格水平有所下降,但零售价格仍较2018年有所上涨。欧盟《能源进口法案》突出了欧盟对化石燃料进口的依赖以及面临的动荡国际市场。2016至2018年,欧洲能源进口总额增至3300亿欧元/年,扭转了从2013年最高峰(4000亿欧元)的下降趋势。2020年新冠疫情将降低能源进口价格,随着经济复苏,价格有望上涨,但可能要到2021年才能恢复到2019年的水平。 6、研究、创新和竞争力 (1)研究与创新 在研究与创新方面,欧盟的清洁能源公共和私营支出发展趋势并不乐观。与前几年相比,欧盟成员国在清洁能源研究和创新方面的支出略有减少,而欧盟清洁能源技术研究和创新的公共投入总额在国内生产总值(GDP)的占比在世界主要经济体中是最低的。全球对于清洁能源技术的投资都出现下降趋势,根据国际能源署(IEA)的统计,2019年全球低碳能源技术的公共投入低于2012年。相应地,2012年以来清洁能源技术的专利申请量也在下降,而电池和智慧能源管理等高价值技术的专利申请一直在增加。 近年来,欧洲能源联盟研究与创新优先领域的私人投资一直在减少。此外,欧盟成员国、工业界、学术界和欧盟委员会对欧盟“战略能源技术计划”(SET-Plan)涵盖的研究和创新活动相关投资仅占到2030年所需资金投入的15%。欧盟成员国能够利用一系列政策工具支持研究与创新活动,如“地平线欧洲”、“创新基金”和“投资欧洲”等。“地平线2020”框架计划针对欧洲绿色协议的招标预算为10亿欧元,旨在解决关键的能源和系统集成挑战,包括海上和陆上能源的生产、对大规模电解槽的支持、清洁能源在港口、机场的使用以及高能效建筑的建设和翻新。 (2)竞争力 第一份竞争力进展报告显示,欧盟工业部门成功抓住了清洁能源技术需求增加带来的机遇。在增加值、劳动生产率、就业增长和普及率方面,工业部门的竞争力优于传统能源技术。就GDP而言,清洁能源部门在欧盟经济中越来越重要,而传统能源的重要性正在下降。欧盟工业部门得益于风能、可再生氢能和海洋能技术的先发优势。在欧盟不具备(或已失去)先发优势的领域,也需要持续努力追赶并建立竞争优势。 考虑到对太阳能和锂电池的需求增长,这些技术的模块化和在其他领域的应用潜力尤为重要,如将太阳能系统集成到建筑、车辆或其他基础设施中。欧洲电池联盟已经证明了欧盟成员国、研究团体和工业界之间更好的协调能够促使工业利益相关方投资清洁技术。基于这一成功探索,欧盟委员会发起了欧洲清洁氢能联盟和欧洲原材料联盟。同样,智能电网等其他关键技术也很重要,预计欧盟智能电网行业将在未来十年显著增长。考虑到绿色技术的绝大多数投资将在欧盟以外地区进行,有必要确保欧盟产业能够在公平的环境中竞争。 (3)补贴 欧盟有必要加大努力,以减少能源浪费并促进能源转型,能源补贴数据是进行准确监控的关键。能源补贴相关数据仍然零散,各成员国《国家能源和气候计划》的报告基本不完整。欧盟能源补贴报告显示,2018年欧盟能源补贴总额达到1590亿欧元,较2015年增长5%。其中,超过一半的补贴支持清洁能源转型,但化石燃料补贴仍占1/3(500亿欧元)。化石燃料补贴在过去十年相对稳定,2012年达到530亿欧元的峰值,随后从2015年开始再次增长,到2018年增长了6%。奥地利、丹麦、爱沙尼亚和匈牙利等成员国与这一总体趋势相反,大幅削减了化石燃料补贴。 7、结论与展望 欧洲能源联盟已成为实现《欧洲绿色协议》目标的重要支柱,新冠疫情危机的巨大压力已经验证了能源联盟框架的韧性,总体而言,能源联盟可以支持欧盟实现2050年碳中和目标。欧盟委员会将在未来几个月全力支持成员国制定强有力且经得起考验的国家经济复苏计划,以可持续和社会公平的方式推动欧洲的发展。 在这种背景下,必须尽快加大努力以减少对浪费性能源消费的支持,并将其转向促进清洁能源转型的措施,如终止化石燃料补贴。欧盟委员会将与成员国合作,减少化石燃料消费并逐步取消化石燃料补贴。此外,委员会将着手应对国家层面对清洁能源技术研究和创新投入明显减少的问题,以增强长期可持续增长的潜力,包括通过建立产业联盟在整个价值链上整合公共和私人资金等措施。欧盟委员会将继续与会员国密切合作,提出加强立法执行力度的具体解决方案,例如通过欧盟可再生能源发展平台和可再生能源融资机制。除了已经达成一致的立法之外,针对建筑和甲烷排放发布的战略补充了欧盟为实现2030年气候目标做出的努力,欧盟将在今年晚些时候提出有关海上能源和泛欧能源基础设施的战略。此外,欧盟委员会将在2021年6月之前提出关键的立法提案,助力实现2030年气候目标。
  • 《欧盟发布光伏战略研究与创新议程征求意见稿》

    • 来源专题:能源情报网信息监测服务平台
    • 发布时间:2022-01-22
    • 5月27日,欧洲光伏技术与创新平台(ETIP PV)发布《光伏战略研究与创新议程》向公众征求意见,指出欧洲光伏技术已具有经济和环境竞争力,但必须克服技术创新、装备制造、系统集成和材料循环利用过程中的一些障碍。该议程分析了光伏技术研究和创新面临的5方面挑战,提出了关键技术到2030年的绩效指标,并基于技术成熟度等级设定了技术路线图。该议程对于重点领域的划分不是基于技术类型,而是从提升光伏技术竞争力以推进完全市场化角度考虑,确定相应的关键技术,并基于技术的成熟度进行研发规划。具体绩效指标及优先事项如下: 一、提高性能和降低成本 1、硅基光伏模块 (1)技术指标(到2030年)。①欧洲具备100吉瓦(GWp)硅基电池单体和模块的低碳制造能力。②公用事业规模光伏的平准化发电成本(LCOE)达到0.025欧元/千瓦时,集成光伏系统的LCOE低于0.05欧元/千瓦时。③欧洲成为高性能可持续硅基光伏技术的世界领先者,光伏模块转换效率达到25%,寿命达到50年,南欧地区的能源投资回报率(EROI)大于50。 (2)研发重点。①技术成熟度(TRL)2-3级技术早期研发:2021-2026年,研发纳米光子结构使电池单体更薄;2022-2030年,通过上下转换太阳电池、直接带隙薄膜等先进技术提高效率。②TRL 3-5级技术开发:2021-2023年,开发用于G12及更大尺寸硅片的拉晶技术;2021-2025年,推进模块开发。③TRL5-7级技术示范:2021-2026年,外延晶片/替代品的工艺及设备;2021-2030年,更高性能可持续模块技术(无铅、无氟、寿命更长等)。④TRL 7-8级技术旗舰项目:2022-2027年,部署先进同质结、异质结电池/模块的试点项目;2025-2030年,部署先进拉晶和外延晶片技术的试点项目。 2、钙钛矿基光伏模块 (1)技术指标(到2030年)。①钙钛矿光伏的LCOE不高于晶硅(c-Si)光伏。②钙钛矿光伏的碳足迹低于晶硅光伏碳足迹的80%,且其模块必须完全可回收。③商业钙钛矿光伏模块效率高于23%。 (2)研发重点。①TRL 2-3级技术早期研发:2021-2025年,研发无铅薄膜光伏吸收层;2021-2026年,研发低成本高性能透明电极;2026-2030年,研发钙钛矿光伏回收策略。②TRL 3-5级技术开发:2021-2026年,开发模块制造技术。③TRL 5-7级技术示范:2021-2023年,进行将钙钛矿光伏模块应用于玻璃和箔片的多种用途中试规模示范。④TRL 7-8级技术旗舰项目:2023-2029年,在欧洲建立将钙钛矿光伏模块应用于玻璃和箔片的试产线。 3、薄膜(非钙钛矿)光伏模块 (1)技术指标(到2030年)。①薄膜光伏技术的LCOE不高于晶硅光伏。②与2020年标准相比,薄膜光伏每瓦的铟或碲含量减少至1/3,效率增加20%。③欧洲薄膜光伏的全球市场份额达到10%。 (2)研发重点。①TRL2-3级技术早期研发:2021-2030年,筛选用于单结和多结光伏的新型薄膜吸收层材料。②TRL 3-5级技术开发:2021-2026年,开发用于特定集成应用的薄膜光伏;2023-2028年,通过模块设计改进可持续性。③TRL5-7级技术示范:2021-2028年,大面积模块的生产,降低“从实验室到工厂”(lab-to-fab)的损失;2023-2030年,用于集成光伏系统的大规模定制生产流程。④TRL 7-8级技术旗舰项目:2021-2026年,更大尺寸模块的下一代生产设备;2025-2030年,建立大批量定制产品的试产线。 4、串联光伏模块 (1)技术指标(到2030年)。①串联光伏的效率至少比相应的单结技术高5个百分点。②串联光伏的寿命与单结技术相当。③增加结的生产成本低于8欧元/平米。 (2)研发重点。①TRL 3-5级技术开发:2021-2024年,开发稳定的高质量复合层和电荷选择层;2022-2026年,改进三结(3T)和4结(4T)串联模块概念。②TRL 5-7级技术示范:2021-2026年,开发模块级的高产量生产工艺;2022-2028年,开发双面多结器件。③TRL 7-8级技术旗舰项目:2023-2030年,在欧洲建立不同串联技术及应用的试产线。 5、辅助系统(BoS)及提高能量输出 (1)技术指标(到2030年)。①BoS组件需确保完整光伏系统的运行寿命达到50年。②BoS组件将确保光伏具备竞争力,即光伏系统LCOE达到0.025欧元/千瓦时,集成光伏系统的LCOE达到0.05欧元/千瓦时。 (2)研发重点。①TRL 2-3级技术早期研发:2022-2029年,研发具有更高功率密度和可靠性的宽带隙逆变器。②TRL 3-5级技术开发:2022-2027年,将传感器集成到光伏模块中;2024-2030年,开发新型安装固定结构,其材料更少,灵活性更高。③TRL 5-7级技术示范:2021-2024年,示范具有优化电网管理功能的逆变器;2026-2030年,组件老化和能量输出的联合分析。 6、光伏制造数字化 (1)技术指标(到2030年)。评估和连接从组件生产到光伏电站建设运营的数据,使用基于人工智能(AI)的数据分析实现工厂自学习和自优化。 (2)研发重点。①TRL 2-3级技术早期研发:2021-2027年,研发基于AI的自学习数据分析软件;2022-2029年,研发制造工艺和产品的多尺度模型。②TRL 3-5级技术开发:2022-2029年,开发用于设备和生产数据的智能传感器。③TRL 5-7级技术示范:2021-2025年,AI支持的预测性维护概念;2026-2030年,数字化方法的产业化。 7、光伏系统数字化 (1)技术指标(到2030年)。开发新型数字光伏系统,将光伏与光子学、微电子和电力电子学、传感器、储能、无线通信和计算机科学结合。 (2)研发重点。①TRL 2-3级技术早期研发:2021-2025年,进行真实条件下的性能建模;2022-2029年,研发光伏系统的无线通信和传输。②TRL 3-5级技术开发:2022-2030年,通过AI和大数据分析改进能量输出、预测及预测性维护。③TRL 5-7级技术示范:2021-2025年,建立光伏系统和电站的综合数据集;2025-2030年,自动化和预测性光伏资产管理。④TRL 7-8级技术旗舰项目:2026-2030年,光伏系统和电站的数字孪生。 二、提高寿命、可靠性和可持续性 1、低环境影响材料、产品和工艺 (1)技术指标(到2030年)。①生产冶金级硅(MGS)所需能量低于20千瓦时/千克(目前为32千瓦时/千克)。②串联光伏系统的碳足印低于40克CO2当量/千瓦时,薄膜单结光伏系统低于20克CO2当量/千瓦时。③增加从欧洲生产商购买光伏材料。 (2)研发重点。①TRL 2-3级技术早期研发:2021-2025年,光伏碳足迹评价;2022-2029年,量化材料高价值回收的收益。②TRL 3-5级技术开发:2022-2029年,开发低/零有害物质的高品质/可靠性晶硅模块。③TRL 5-7级技术示范:2021-2025年,铜基连接系统;2026-2030年,在模块组装中使用可回收聚合物。④TRL 7-8级技术旗舰项目:2024-2030年,建立欧洲原材料弹性供应链。 2、设计、系统及运行维护以用于再利用 (1)技术指标(到2030年)。①对于运行寿命低于15年的光伏系统,确保报废时在相关回收处理部门实施明确的分类协议,并确保维修/重复利用量增加60%。②重复利用的模块至少运行10年,到2030年累积寿命达到40年以上水平。 (2)研发重点。①TRL 2-3级技术早期研发:2021-2025年,光伏系统的可逆材料和“材料护照”[ 材料护照(material passport),记录了材料的生产、组成、使用等信息,为材料报废和再利用提供相关信息,用于材料的循环经济。];2022-2029年,再利用和回收的系统/模块拆解技术。②TRL 3-5级技术开发:2022-2029年,新一代光伏面板和背板材料及可重复使用的涂层。③TRL 5-7级技术示范:2021-2025年,光伏模块维修技术;2025-2028年,弹性和自修复互连技术;2026-2030年,非破坏性光伏健康表征技术。④TRL 7-8级技术旗舰项目:2024-2030年,下一代可重复使用面板和背板材料的质量和可靠性验证。 3、回收技术 (1)技术指标(到2030年)。①从切割硅锭的废料中回收40%的纯硅。②从光伏组件废料中回收90%以上的乙烯-醋酸乙烯共聚物(EVA)、聚氟乙烯(PVF)、聚偏氟乙烯(PVDF)和聚对苯二甲酸乙二醇酯(PET)。③报废回收率(EOL-RR)达到硅90%、铟30%、银70%。 (2)研发重点。①TRL 2-3级技术早期研发:2021-2025年,研究光伏材料的环境、社会和治理影响;2022-2029年,开发车辆/建筑集成光伏的回收工艺。②TRL 3-5级技术开发:2022-2029年,开发特定材料高价值回收工艺。③TRL 5-7级技术示范:2021-2024年,聚合物材料回收工艺;2025-2030年,报废光伏中硅的高价值回收。④TRL 7-8级技术旗舰项目:2024-2030年,从工业及用户报废光伏中回收玻璃用于新光伏产品。 4、生态标签和能源标签 (1)技术指标。每年更新生命周期清单(LCI)数据库。 (2)研发重点。①TRL 5-7级技术示范:2022-2026年,通过生态设计加强光伏逆变器的可修复性;可持续性的整体评估。②TRL 7-8级技术旗舰项目:2022-2030年,进一步升级动态数据库,大规模实施生态标签。 5、质量保证以提高使用寿命和可靠性 (1)技术指标(到2030年)。①提高新技术(例如双面光伏)和新系统设计(例如浮动式光伏)的优良率评估准确性,不确定性小于5%(典型值为5%-10%)。②经扩展测试验证的光伏组件使用寿命达到40年。③在欧洲建立组合或顺序压力测试的测试能力。 (2)研发重点。①TRL 3-5级技术开发:2022-2028年,开发预测光伏组件及系统的数据驱动和/或物理模型;2022-2026年,开发确定长期退化的方法;2022-2024年,开发创新方法降低干热气候下的模块环境温度,以增加能量输出。②TRL 5-7级技术示范:2021-2030年,示范涵盖新技术和系统设计的更准确优良率评估方法;2024-2027年,开发与天气或环境条件相关的材料和组件选择数据/设计工具。③TRL 7-8级技术旗舰项目:2022-2026年,建立组合或顺序压力测试设施;2025-2030年,确立光伏模块取证方法;2026-2030年,通过虚拟原型工具预测热-机械失效可能性。 6、提高现场性能和可靠性 (1)技术指标。②到2030年,确保在40年内经过验证的系统能量输出至少维持在初始水平的80%。②成本降低15%,到2025年光伏性能数据库中50吉瓦机组平均运行时间至少达到3年,到2030年100吉瓦机组运行时间至少达到7年。 (2)研发重点。①TRL 3-5级技术开发:2021-2030年,开发预测性维护算法;开发嵌入式传感器,使用现场自主无人机。②TRL 5-7级技术示范:2022-2028年,工程总包和运行维护友好型光伏组件及系统设计,开发复合或集成监控诊断图像解决方案;2022-2026年,运维优化指标的大规模有效使用,开发完全诊断方法。③TRL 7-8级技术旗舰项目:2024-2030年,开发数据驱动和或物理模型/可靠性模型,建立光伏电站性能的大规模数据库。 7、可融资性、保证和合同条款 (1)技术指标(到2030年)。①与基准水平相比,公用事业规模光伏的典型加权资本成本降低1%。②确定具有相关风险的模块、逆变器和支撑结构的保修级别。 (2)研发重点。①TRL 3-5级技术开发:2021-2025年,基于统计分析得出产品保证。②TRL 5-7级技术示范:2021-2025年,新的运行维护策略;2025-2030年,通过工程总承包合同提供具有不同成本的多种保修选项。③TRL 7-8级技术旗舰项目:2021-2025年,开发去风险平台;2023-2030年,开发渐进式重新授权方案。 三、多样化的应用和集成 1、建筑光伏 (1)技术指标(到2030年)。①建筑能源覆盖:需求覆盖率>50%,能源自给率>30%,电力自消费>80%。②建筑光伏成本比2020年水平降低50%以上。③产品运行寿命超过35年。④与2020年水平相比,产品可回收性提高50%,并符合建筑行业标准。 (2)研发重点。①TRL 2-3级技术早期研发:2021-2026年,研发超长寿命产品及组件,形成可定制的工业产品,成为建筑行业价值链的一部分。②TRL 3-5级技术开发:2021-2027年,开发具有不同尺寸、抗脱落、美观的光伏模块互连技术。③TRL 5-7级技术示范:2022-2028年,用于智能光伏及双面光伏的透明和不透明围护部件。④TRL 7-8级技术旗舰项目:2024-2030年,建立可批量生产定制建筑光伏的生产线。 2、车辆集成光伏 (1)技术指标(到2030年)。①开发不同的电池、互连以及封装技术和材料。②车辆能源覆盖:平均续航里程增加40%,充电次数减少50%。③支持欧洲光伏价值链深度融入汽车行业。④根据欧盟道路和车辆要求以及安全/维修/维护标准,在安全性、电磁兼容性、可回收性等方面调整光伏性能。⑤产品外观和美学符合汽车行业标准。 (2)研发重点。①TRL 2-3级技术早期研发:2021-2026年,超快最大功率点追踪技术和耐部分遮挡性能。②TRL 3-5级技术开发:2022-2027年,产品适合车辆安全和回收标准,开发与寿命、外观和维修相关的互连和封装。③TRL 5-7级技术示范:2023-2028年,车辆集成光伏的试生产线。④TRL 7-8级技术旗舰项目:2025-2030年,示范集成光伏产品的汽车生产线。 3、农业光伏和景观集成 (1)技术指标(到2030年)。通过生命周期分析,到2025年确定最具协同作用的电厂-光伏技术-农业布局,到2027年进一步评估,到2030年在公用事业规模发电厂部署,具体将实现:①正协同平衡,即能源和作物的综合产出超过任何单一产出;②通过区域内不同作物-能源的组合优化使产品多样化;③通过光伏电池板优化收集来改善用水。 (2)研发重点。①TRL 2-3级技术早期研发:2021-2026年,光伏生产适应优化作物的透明条件。②TRL 3-5级技术开发:2022-2027年,开发适合景观集成以及公众接受的光伏产品。③TRL 5-7级技术示范:2023-2028年,中试规模农业-光伏电站的区域多样化示范。④TRL 7-8级技术旗舰项目:2025-2030年,优化作物-能源的实际规模示范。 4、浮动式光伏 (1)技术指标(到2030年)。①与2020年相比,将浮动式光伏成本降低50%以上。②发挥浮动式光伏的固有优势,如冷却、跟踪等。③增加浮动式光伏的使用寿命,使其接近或与陆上光伏相当(大于35年)。④与2020年相比,可回收性提高50%以上。 (2)研发重点。①TRL 2-3级技术早期研发:2021-2026年,改进模块及BoS组件的寿命。②TRL 3-5级技术开发:2022-2027年,开发浮动式光伏的能量输出性能预测技术,示范浮动式光伏的中性或正生态影响。③TRL 5-7级技术示范:2023-2028年,中等波浪高度浮动式光伏试点电站的示范,浮动式光伏结合风能或氢能的试点示范。④TRL 7-8级技术旗舰项目:2025-2030年,海上浮动式光伏示范。 5、基础设施集成光伏 (1)技术指标(到2030年)。与2020年相比:①将基础设施集成光伏成本降低50%以上,同时维持基础设施的主要功能;②将基础设施集成光伏运行寿命提高80%以上;③可回收性提高50%以上。 (2)研发重点。①TRL 2-3级技术早期研发:2021-2026年,开发特定应用的包装/封装/连接器,改进在交通繁忙路段集成光伏的耐磨性。②TRL 3-5级技术开发:2022-2027年,测试防撞栏集成光伏的安装。③TRL 5-7级技术示范:2022-2028年,示范隔音屏集成光伏。 6、低功率能量收集光伏 (1)技术指标(到2030年)。①在200-500勒克斯白光照明范围内,将光伏模块的低光照光转换效率提高25%;②与2020年水平相比,成本降低50%以上;③运行寿命延长5年以上;④与2020年水平相比,可回收性提高50%以上,并符合室内或消费品标准。 (2)研发重点。①TRL 2-3级技术早期研发:2021-2026年,开发高效的低光照光伏,采用替代材料基板(如塑料、纸张)。②TRL 3-5级技术开发:2022-2028年,将光伏与储能元件集成。③TRL 5-7级技术示范:2024-2028年,集成完全能量自主设备。④TRL 7-8级技术旗舰项目:2025-2030年,将能量自主设备用于信息和通信领域。 四、智慧能源系统集成 1、分布式智能控制 (1)技术指标(到2030年)。①开发支持储能的光伏准确预测工具;②通过智能逆变器支持系统频率控制;③智能逆变器的并网能力。 (2)研发重点。①TRL 5-8级技术开发、示范及旗舰项目:2021-2026年,智能逆变器并网能力的开发及示范。②TRL 6-8级技术示范及旗舰项目:2021-2025年,精确预测工具;2022-2025年,智能逆变器支持系统频率的示范。 2、光伏集成到直流网以提高效率 (1)技术指标(到2030年)。①直流供电系统直接用于供应热、冷和热水;②建筑物混合交/直流系统标准化;③通过混合交/直流能源社区系统实现效率提高30%。 (2)研发重点。①TRL 6-8级技术示范及旗舰项目:2021-2025年,建筑物混合交/直流系统标准化,通过混合交/直流能源社区系统实现效率提高30%。 3、复合系统(包括需求灵活性) (1)技术指标(到2030年)。①开发复合可再生能源解决方案以发挥低成本光伏的益处;②开发复合可再生能源解决方案以利用储能系统的附加优势;③开发复合可再生能源解决方案以发挥负荷灵活性益处。 (2)研发重点。①TRL 6-8级技术示范及旗舰项目:2021-2025年,将光伏与其他发电结合以发挥低成本光伏的益处;2022-2027年,开发包含储能的复合可再生能源系统;2022-2030年,开发灵活性负荷的复合可再生能源系统。 4、聚合能源和虚拟电厂 (1)技术指标(到2030年)。①为系统提供聚合服务的工具组合;②能源社区标准化运行模式;③集成电网分级控制的标准化。 (2)研发重点。①TRL 6-8级技术示范及旗舰项目:2021-2025年,开发为系统提供聚合服务的工具组合;2022-2027年,开发能源社区的标准化运行模式;2022-2030年,实现集成电网分级控制的标准化。 5、可再生能源智能电网通信和运行的互操作性 (1)技术指标(到2030年)。①基于逆变器的互操作控制系统;②系统通信协议连通性;③完全互操作的先进(远程可控)逆变器服务。 (2)研发重点。①TRL 6-8级技术示范及旗舰项目:2021-2025年,开发基于逆变器的互操作控制系统;2022-2027年,开发系统通信协议连通性技术;2022-2030年,开发先进的逆变器服务。 五、转型的社会经济效益 1、太阳能光伏部署的广泛社会参与 (1)主要目标。①可再生能源/光伏合作社;②可再生能源/光伏能源社区。 (2)重点举措。①利益相关者:2021-2030年,简化监管;2023-2030年,为个人或集体的光伏部署提供机会。②研究:2021-2030年,增强实施吸引力的因素研究;2022-2030年,简化实施的流程。 2、促进在城市的部署 重点举措。①城市、区域、能源社区:2021-2030年,设计监管和行政环境的举措。②居民和供应者:2022-2029年,科学界和市政利益相关者之间的协作;2023-2030年,融资和众筹解决方案的可行性。③国家监管机构:2023-2030年,确保光伏行业和建筑业光伏的发展空间。