《探索 | 光诱导力显微技术》

  • 来源专题:光电情报网信息监测服务平台
  • 编译者: 胡思思
  • 发布时间:2025-06-23
  • 光诱导力显微技术Photo-induced force microscopy (PiFM)已经成为纳米尺度成像的一种变革性技术,深入理解纳米尺度材料的化学成分和空间组织。光诱导力显微技术PiFM,实现了表面科学、地质研究、生物研究、材料科学、光子学等领域创新。相比于其他基于探针的光谱方法,光诱导力显微技术PiFM中,针尖-样品相互作用的性质,可以提供更好的空间分辨率和表面灵敏度。

    近日,加州大学尔湾分校(University of California, Irvine)Maxim R. Shcherbakov,H. Kumar

    Wickramasinghe等,在Nature Reviews Methods Primers上发文,介绍了光诱导力显微技术PiFM的基本原理,讨论了该方法的配置,以及先进的模式和修改,如超高真空和非线性技术。

    还概述了包括表面化学、生物学、高分子科学和纳米光子学在内的研究结果和设想,最后讨论了光诱导力显微技术PiFM的局限性和改进点,并概述了这种多功能纳米光谱技术的未来发展。

    图1: 光诱导力显微技术Photo-induced force microscopy,PiFM的基本原理

    图2:非线性光诱导力显微技术PiFM实验的典型布局

  • 原文来源:https://www.nature.com/articles/s43586-025-00403-0
相关报告
  • 《探索 | Iontronic器件的未来:离子激光诱导石墨烯电极》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2024-02-27
    • 离子电子学领域的进步,特别是在离子电子器件电极的开发方面,最近取得了重大飞跃。已经开发了一种使用CO2激光辐照在聚酰亚胺离子凝胶上直接合成离子激光诱导石墨烯电极的新方法,有望以其卓越的石墨烯质量、最小的缺陷和更高的结晶度彻底改变该领域。这种创新技术不仅增强了PI离子凝胶的离子传输特性,而且还提供了稳定的界面形成和高EDL电容。 正如发布在《自然》杂志上的一项研究所报道的那样,研究人员已经成功地制定了一种方法,使用CO2激光照射在基于聚酰亚胺的离子凝胶上直接制造高导电性、适形的激光诱导石墨烯电极。该技术产生具有增强结晶度和扩展多孔结构的高质量石墨烯,从而降低界面电阻并增加 EDL 电容。本研究中的PI离子凝胶在电极界面处表现出特殊的双电层形成,这一特性主要归因于高效的离子迁移。当离子液体浓度被调制时,这种改进的离子传输特性导致了由EDL电容驱动的高性能离子电子器件。 在聚酰亚胺离子凝胶上直接合成离子激光诱导的石墨烯电极不仅阐明了制造高质量石墨烯的新方法;它还为其在各种技术设备中的应用开辟了一个充满可能性的世界。正如都灵理工大学的一份出版物所指出的那样,这种创新方法在柔性电子、储能和可穿戴设备方面具有潜在的应用。该过程涉及将聚酰亚胺离子凝胶转化为激光诱导的石墨烯,其表现出优异的导电性和机械柔韧性。这种机械、结构和电化学的多功能性表明了对低电压、高性能离子电子器件未来的重大影响。 利用CO2激光辐照在聚酰亚胺离子凝胶上生产离子激光诱导石墨烯电极的创新方法在离子电子学领域取得了突破性进展。它能够以最小的缺陷和更高的结晶度生产高质量的石墨烯,再加上它在各种技术设备中的潜在应用,推动我们更接近低电压、高性能离子电子器件司空见惯的未来。随着研究的不断完善和推进,我们可以预期离子传输特性和EDL电容的进一步增强,从而促进更高效和多功能的离子电子器件的开发。
  • 《飞秒激光诱导分子组装新方法》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2024-06-26
    • 近日,华中科技大学武汉光电国家研究中心熊伟教授团队提出了一种新颖的分子三维组装方法。通过规划飞秒激光焦点扫描路径控制各项异性分子的定向排布,研究团队实现了液晶分子高精度和高自由度的三维定向组装。该研究不仅可用于液晶型光电功能器件的三维高精度组装制造,同时也为其他各向异性分子的三维高自由度高定向组装提供了新的思路。相关研究成果以“3D Directional Assembly of Liquid Crystal Molecules”为题发表在《Advanced Materials》上。 分子自组装是指无序的分子在分子间相互作用下形成有序结构的一种技术,被认为是最有潜力的“自下而上”纳米技术之一。该技术能够充分发挥各向异性分子基团的光、电、磁、热、机械等特性,从而满足信息、生命、电子、材料等领域的应用需求。然而,分子间的弱相互作用往往难以实现应用中所需的强各向异性,限制了高性能各项异性分子器件的发展。目前,国际上已报道的分子定向组装多为单轴有序排布,各向异性分子也仅能按照晶格或堆叠的有序排列,如何攻克高精度、可编程、高自由度的三维分子组装一直是当前的一项国际难题。 针对这一挑战,熊伟教授团队以典型的各向异性液晶分子为例,利用飞秒激光直写技术,编程规划激光焦点的扫描路径,实现了液晶分子的高自由度三维定向组装,通过控制激光扫描方向即可定制分子组装方向。这一方法无需对液晶分子进行预先取向处理,首次在三维分子组装领域将光场用于分子取向与聚合过程,实现了单步高精度高定向的分子组装,如图1所示。 通过在加工系统上搭建实时偏振观察模块并结合理论推导计算,研究团队深入探讨了飞秒激光定向组装液晶分子的物理机制。研究表明,在飞秒激光扫描成形过程中会产生显著的激光诱导剪切力效应,液晶分子沿激光扫描方向形成取向种子层。在随后的显影过程中,由于各向异性的体积收缩,聚合物主链沿激光扫描路径定向排列,从而进一步强化规范了液晶分子的定向排布,如图2所示。 该研究充分发挥了飞秒激光加工的可编程优势,通过激光扫描路径规划可实现不同偏振干涉色的微纳结构,成功制造出具有偏振选择和彩色成像功能的菲涅尔波带片阵列,如图3所示。 熊伟研究团队基于飞秒激光定向组装分子的策略,利用飞秒激光直写的高精度和真三维制造优势,成功实现了液晶分子的亚微米精度(129.6 nm)和高自由度的三维组装,同时该方法在其他有机高分子材料的各向异性组装中也展现出了巨大的潜力。 图1.液晶分子的三维定向组装示意图与实物图 图2.实时偏振观察装置与液晶分子的飞秒激光组装原理 图3.偏振干涉色与具有偏振选择和彩色成像功能的菲涅尔波带片阵列