《Nat Commun:科学家开发出新型基因编辑工具来纠正诱发人类遗传性疾病的突变》

  • 来源专题:生物安全知识资源中心 | 领域情报网
  • 编译者: hujm
  • 发布时间:2021-03-17
  • 近日,一项刊登在国际杂志Nature Communications上的研究报告中,来自新加坡A*STAR研究所等机构的科学家们通过研究开发了一种名为C-G碱基编辑器(CGBE, C-to-G Base Editor)的基于CRISPR的基因编辑器,其或能帮助纠正诱发人类遗传性疾病的突变。

    世界上每17个人中就有1个人会患上某种类型的遗传性疾病,很有可能你身边的人(亲戚、朋友或同事)就是全球受影响的4.5亿人中的一员;诱发这些障碍的突变是由多种突变因素所引起的,比如从太阳光照射到细胞内的自发错误等;机制目前为止,最常见的突变是单一碱基的替代,即DNA中的一个碱基(比如G)被另一个碱基(比如C)所取代,全球无数的囊性纤维化患者机体中就表现为碱基C替代了G,从而就导致缺陷蛋白的产生进而引发遗传性疾病的发生;在另外一种情况下,在血红蛋白中利用T来替代A则会引发镰状细胞性贫血。

    为了修复这些替换,研究人员开发了一种特殊的基于CRISRP的基因编辑器,其或能精准地将基因组中的缺陷碱基C修改为所需的碱基G,这种CGBE编辑器的开发或为科学家们开发新型疗法来应对与人类疾病相关的约40%的单碱基替代提供了一定的希望,这些疾病包括囊性纤维化、心血管疾病、肌肉骨骼疾病和神经系统疾病等。

    CGBE编辑器推动了科学家们广泛采用CRISPR-Cas9技术来使得对人类基因组进行“分子手术”成为可能,CRISPR-Cas9技术目前能用来干扰靶向基因,但当需要对特定序列进行精确更改时,这种技术的效率就会降低;而CGBE编辑器能通过实现有效和精准的基因改变来解决科学家们所面临的问题;其主要由三部分组成:1)修饰后的CRISPR-Cas9能定位突变的基因并将整个编辑器聚焦于这一基因;2)一种能从化合物种移除氨基基团的脱氨酶能靶向缺失的碱基C,并将其进行替换;3)最后,蛋白质能够开启细胞机制来利用碱基G取代有缺陷的碱基C;这就能够帮助研究人员实现从C到G的直接转换,并能纠正突变从而治疗人类遗传性疾病。

    研究者Chew Wei Leong指出,CGBE基因编辑器是一项突破性的发明,其首次将碱基C直接转化为碱基G,这很有可能为与单核苷酸突变相关的遗传性疾病疗法的开发提供了新的思路和希望。研究者表示,患者的安全是最重要的,我们正在努力确保CGBE和CRISPR-Cas9模式在疾病模型研究中是有效且安全的,随后我们才能进一步应用于临床研究中。

    最后研究者Patrick Tan教授说道,诸如CGBE等新型基因编辑器正在扩展不断增长的精确基因组编辑工具的套件,包括胞苷碱基编辑器(CBEs)、腺嘌呤碱基编辑器(ABEs)、CGBEs和prime编辑器等,这些技术结合在一起能对DNA进行精准且有效的工程化修饰,以便未来能用于进行研究、疾病修正,从而引领新型基因医学的新时代。

  • 原文来源:https://www.nature.com/articles/s41467-021-21559-9;https://news.bioon.com/article/6785168.html
相关报告
  • 《新型的基因组编辑策略有望治疗多种人类遗传性疾病》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:huangcui
    • 发布时间:2019-01-08
    • 近日,一项刊登在国际杂志Nature Biotechnology上的研究报告中,来自马萨诸塞大学医学院等机构的科学家们通过研究开发出了一种新型的基因组编辑策略,该策略能够帮助纠正患人类遗传性疾病的小鼠模型机体中的致病性DNA突变。 研究者Dan Wang表示,这种新型基因组方法的开发或有望帮助开发出新型的治疗性策略,从而更加有效地治疗大量患多种遗传性疾病的患者;这项研究中,研究人员首先对患有人类遗传性疾病的小鼠进行研究,研究者通过遗传工程化改造小鼠,使其携带两种不同的突变基因拷贝,这就能够模拟许多人类患者机体的遗传组成。很多遗传性疾病患者通常都携带有两种不同的突变因拷贝,一个来自母亲,一个来自父亲;然而这项研究中所研究的小鼠模型几乎携带着相同的突变。 文章中,研究者利用重组腺病毒相关载体,将名为Cas9/sgRNA系统的基因编辑工具运输到小鼠模型中,这种基因编辑策略的设计能够促进遗传物质的重组从而产生两个新型的基因拷贝,其中一个基因拷贝并不会发生突变,而且能够介导治疗的效益;在很多遗传性疾病中,一个功能性基因拷贝的存在常常就足以支持正常的细胞功能。 研究者Wang说道,我们发现,这种新方法在两种遗传性疾病的治疗上具有明显的治疗效益,这两种疾病分别是I型遗传性酪氨酸血症(hereditary tyrosinemia type I)和称之为贺勒氏症的溶酶体贮积病(Hurler syndrome)。同时,这种治疗性的基因编辑策略还具有多种优势,包括灵活性、能与不同突变相兼容、可能适用于更多的疾病患者,同时这种策略也避免了向靶向基因产品中引入不必要的改变,从而就能够实现“无疤痕”的基因编辑。最后研究者表示,这种新型的治疗性策略未来或许有望应用于更多患多种遗传性疾病的人群。
  • 《Sci Rep:科学家成功利用人工RNA编辑技术修复基因组遗传代码 有望治疗多种遗传性疾病》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2020-10-30
    • 目前并没有确定的疗法来治疗由点突变引起的多种遗传性疾病,近日,一项刊登在国际杂志Scientific Reports上的研究报告中,来自日本先进科学技术研究所等机构的科学家们通过利用人工的RNA编辑研究了一种治疗手段在治疗遗传性疾病上的可行性和有效性。尽管基因编辑技术作为一种基因修复技术备受关注,但诸如CRISPR/Cas9基因编辑技术或许会导致基因组DNAs发生永久性的改变,其可能会影响多个潜在的位点,目前想要在体内对所有靶向细胞实现精准的基因组编辑是非常困难的,所以研究人员就有可能在受精卵、胚胎或细胞中开展基因编辑工作,然而,基因编辑技术或许并不适合用于在人类中进行的基因疗法,此外,对基因组的编辑也会产生一些伦理性的问题。 研究人员认为,基因组编辑是一种适用于体外研究的方法,其或许还适用于对受精卵进行编辑,但目前仍然并不适用于患者机体;相反,RNA编辑所产生的改变并不是永久性的,因为其不会影响机体的基因组序列,而且能够按照序列特异性的方式来完成。因此,从治疗的目的来看,RNA的编辑比基因组编辑更加可取,人工定向的RNA编辑是一种重要的技术,其能修复基因并最终调节所编码蛋白质的功能,如今研究人员正在试图通过人工RNA编辑来修饰转录物的遗传密码,从而实现对遗传性疾病的治疗。 RNA编辑是生物体内广泛存在的一种生理性过程,其能通过单个基因产生具有不同功能的多种蛋白,在哺乳动物中,RNA链的C或A碱基能被碱基序列特异性地水解脱氨,即C被U替代,A被I(肌苷)替代。这些碱基的转换是A或C脱氨的结果,目前研究者发现ADAR和APOBEC家族中的酶类能催化这些碱基转换,随后还会改变RNAs中的遗传密码,这项研究中,研究人员首次利用APOBEC1成功进行了突变RNA中C-U的人工转换。 很多遗传性疾病都是由T-C的点突变引起的,因此,对突变基因进行编辑是治疗这些遗传性障碍的潜在策略,随后研究人员将APOBEC1的脱氨酶结构域和导向RNA(gRNA)结合设计出了一种新型的人工RNA编辑酶类,APOBEC1即载脂蛋白B mRNA编辑催化多肽1(apolipoprotein B mRNA editing catalytic polypeptide 1),而导向RNA则能与靶向的mRNA进行互补。 在人工酶系统中,gRNA能结合到MS2的茎环结构上,而且脱氨酶结构域能融合到MS2衣壳蛋白上,并能将突变的靶向核苷酸从C转换为U,作为靶向RNA,其能利用RNA编码的蓝色荧光蛋白(BFP),而BFP是由基因编码的GFP通过199T > C突变而来,当脱氨酶和gRNA瞬时表达后,研究者就能通过共聚焦显微镜观察到GFP的存在,这就表明,GFP中突变的199C已经转化为了U,从而就恢复了GFP的原始序列。 研究者表示,我们通过对感染细胞的cDNA进行PCR-RFLP(聚合酶链式反应—限制性片段长度多态性)和桑格测序证实了结果,揭示了其编辑效率能达到将近21%,深度RNA测序结果表明,该系统的脱靶效率较低;这样研究人员就能利用人工脱氨酶(APOBEC1)联合MS2系统开发出一种人工的RNA编辑系统,从而就有望通过在mRNA水平下恢复野生型序列来开发出治疗多种遗传性疾病的新型疗法。