《Nat Commun:科学家开发出新型基因编辑工具来纠正诱发人类遗传性疾病的突变》

  • 来源专题:生物安全知识资源中心 | 领域情报网
  • 编译者: hujm
  • 发布时间:2021-03-17
  • 近日,一项刊登在国际杂志Nature Communications上的研究报告中,来自新加坡A*STAR研究所等机构的科学家们通过研究开发了一种名为C-G碱基编辑器(CGBE, C-to-G Base Editor)的基于CRISPR的基因编辑器,其或能帮助纠正诱发人类遗传性疾病的突变。

    世界上每17个人中就有1个人会患上某种类型的遗传性疾病,很有可能你身边的人(亲戚、朋友或同事)就是全球受影响的4.5亿人中的一员;诱发这些障碍的突变是由多种突变因素所引起的,比如从太阳光照射到细胞内的自发错误等;机制目前为止,最常见的突变是单一碱基的替代,即DNA中的一个碱基(比如G)被另一个碱基(比如C)所取代,全球无数的囊性纤维化患者机体中就表现为碱基C替代了G,从而就导致缺陷蛋白的产生进而引发遗传性疾病的发生;在另外一种情况下,在血红蛋白中利用T来替代A则会引发镰状细胞性贫血。

    为了修复这些替换,研究人员开发了一种特殊的基于CRISRP的基因编辑器,其或能精准地将基因组中的缺陷碱基C修改为所需的碱基G,这种CGBE编辑器的开发或为科学家们开发新型疗法来应对与人类疾病相关的约40%的单碱基替代提供了一定的希望,这些疾病包括囊性纤维化、心血管疾病、肌肉骨骼疾病和神经系统疾病等。

    CGBE编辑器推动了科学家们广泛采用CRISPR-Cas9技术来使得对人类基因组进行“分子手术”成为可能,CRISPR-Cas9技术目前能用来干扰靶向基因,但当需要对特定序列进行精确更改时,这种技术的效率就会降低;而CGBE编辑器能通过实现有效和精准的基因改变来解决科学家们所面临的问题;其主要由三部分组成:1)修饰后的CRISPR-Cas9能定位突变的基因并将整个编辑器聚焦于这一基因;2)一种能从化合物种移除氨基基团的脱氨酶能靶向缺失的碱基C,并将其进行替换;3)最后,蛋白质能够开启细胞机制来利用碱基G取代有缺陷的碱基C;这就能够帮助研究人员实现从C到G的直接转换,并能纠正突变从而治疗人类遗传性疾病。

    研究者Chew Wei Leong指出,CGBE基因编辑器是一项突破性的发明,其首次将碱基C直接转化为碱基G,这很有可能为与单核苷酸突变相关的遗传性疾病疗法的开发提供了新的思路和希望。研究者表示,患者的安全是最重要的,我们正在努力确保CGBE和CRISPR-Cas9模式在疾病模型研究中是有效且安全的,随后我们才能进一步应用于临床研究中。

    最后研究者Patrick Tan教授说道,诸如CGBE等新型基因编辑器正在扩展不断增长的精确基因组编辑工具的套件,包括胞苷碱基编辑器(CBEs)、腺嘌呤碱基编辑器(ABEs)、CGBEs和prime编辑器等,这些技术结合在一起能对DNA进行精准且有效的工程化修饰,以便未来能用于进行研究、疾病修正,从而引领新型基因医学的新时代。

  • 原文来源:https://www.nature.com/articles/s41467-021-21559-9;https://news.bioon.com/article/6785168.html
相关报告
  • 《新型的基因组编辑策略有望治疗多种人类遗传性疾病》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:huangcui
    • 发布时间:2019-01-08
    • 近日,一项刊登在国际杂志Nature Biotechnology上的研究报告中,来自马萨诸塞大学医学院等机构的科学家们通过研究开发出了一种新型的基因组编辑策略,该策略能够帮助纠正患人类遗传性疾病的小鼠模型机体中的致病性DNA突变。 研究者Dan Wang表示,这种新型基因组方法的开发或有望帮助开发出新型的治疗性策略,从而更加有效地治疗大量患多种遗传性疾病的患者;这项研究中,研究人员首先对患有人类遗传性疾病的小鼠进行研究,研究者通过遗传工程化改造小鼠,使其携带两种不同的突变基因拷贝,这就能够模拟许多人类患者机体的遗传组成。很多遗传性疾病患者通常都携带有两种不同的突变因拷贝,一个来自母亲,一个来自父亲;然而这项研究中所研究的小鼠模型几乎携带着相同的突变。 文章中,研究者利用重组腺病毒相关载体,将名为Cas9/sgRNA系统的基因编辑工具运输到小鼠模型中,这种基因编辑策略的设计能够促进遗传物质的重组从而产生两个新型的基因拷贝,其中一个基因拷贝并不会发生突变,而且能够介导治疗的效益;在很多遗传性疾病中,一个功能性基因拷贝的存在常常就足以支持正常的细胞功能。 研究者Wang说道,我们发现,这种新方法在两种遗传性疾病的治疗上具有明显的治疗效益,这两种疾病分别是I型遗传性酪氨酸血症(hereditary tyrosinemia type I)和称之为贺勒氏症的溶酶体贮积病(Hurler syndrome)。同时,这种治疗性的基因编辑策略还具有多种优势,包括灵活性、能与不同突变相兼容、可能适用于更多的疾病患者,同时这种策略也避免了向靶向基因产品中引入不必要的改变,从而就能够实现“无疤痕”的基因编辑。最后研究者表示,这种新型的治疗性策略未来或许有望应用于更多患多种遗传性疾病的人群。
  • 《中国科学家培育出单碱基突变遗传性疾病动物模型》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2018-07-22
    • 记者从吉林大学了解到,近日吉林大学动物医学学院赖良学团队利用新型单碱基编辑系统成功对家兔实现单碱基精确突变,培育出具有白化病、早衰症等遗传性疾病模型兔,这代表人类距离基因治疗时代更近一步。 团队成员、吉林大学动物医学学院博士李占军介绍,白化病、早衰症等遗传性疾病都是由于基因组发生单碱基突变所致。由于遗传性疾病产生的原因是先天性基因组缺陷,传统药物对其治疗无效。采取基因治疗方法,即直接修复基因组上的单碱基突变是最佳的治疗手段。现行的基因治疗技术手段还无法满足临床治疗的要求。 赖良学团队利用国际上最新使用的新型“碱基编辑器”(Base editor,BE3和ABE),在国际上率先在模式动物兔上改变单个碱基,精确地模拟出人类单碱基突变遗传病中的无义突变、错义突变和RNA错误剪切,成功培育出白化病、早衰症、双肌臀等疾病模型兔。家兔在遗传、生理及解剖上比较接近人类,因此成果标志着人类距实现基因治疗该类遗传性疾病更近一步。 该团队能在国际上率先在模式动物兔上改变单个碱基,源于多年来利用基因编辑进行生物医药和动物育种研究所积累的经验。基因编辑专家、上海科技大学教授黄行许认为,该研究证实了利用碱基编辑器进行安全、精确、高效基因治疗的可行性。该成果已在国际知名刊物《自然-通讯》发表,该研究得到了国家重点研发计划“干细胞及转化研究”专项资助。 下一步,赖良学团队会尽快将该技术成果应用于人类遗传病的分子治疗,与其他研究单位合作开展相关疾病的临床前研究,也会继续开发、优化新型基因编辑系统,用于复杂遗传性疾病模型的构建及基因治疗。