《“海洋-大气生物地球化学循环及其气候效应”创新(培育)团队在碳中和研究领域取得阶段性成果》

  • 来源专题:中国科学院文献情报系统—海洋科技情报网
  • 编译者: liguiju
  • 发布时间:2022-06-01
  • 近日,自然资源部第三海洋研究所“海洋-大气生物地球化学循环及其气候效应”创新(培育)团队在近岸养殖温室气体研究方面取得进展,研究成果以“Greenhouse gas emissions from fed mollusk mariculture: A case study of a Sinonovacula constricta farming system”为题发表在《Agriculture, Ecosystems & Environment》上(中国科学院一区top)。该研究揭示了缢蛏养殖过程中温室气体(CO2、CH4和N2O)和二甲基硫的通量变化及其影响因素,估算了缢蛏养殖的综合温室潜力,为进一步评估贝类养殖系统的碳源汇格局提供了理论依据。

    我国是海水养殖大国,其中缢蛏养殖产量占全球软体贝类产量的4.9%。尽管养殖解决了食物危机,但对养殖过程中伴随的温室气体交换和碳源汇潜力的了解仍然有限。团队基于现场观测数据,获得了缢蛏养殖池塘内外多种温室气体浓度、碳酸盐体系各部分组成含量和其他环境参数等,发现人工缢蛏养殖池在光照充足时可以吸收大气CO2,但非CO2温室气体(CH4和N2O)的排放不仅抵消了其碳汇作用,还贡献了超过75%的综合温室潜力(百年尺度)。这种温室气体的排放模式与养殖环境和养殖策略有关。因此,建议通过改善单一的养殖结构和调整养殖模式(如循环水利用)的方式来达到增强碳汇的目的。另外,还建议未来在评估养殖碳源汇中充分考虑非CO2温室气体的作用。

    为响应国家碳中和远景目标,海气重点室与工程中心于2021年初开始联合开展近海典型生态系统的碳源汇潜力评估研究。经过文献调研、现场勘察、充分讨论后,选取了以紫泥红树林养殖区为代表的养殖温室气体试验点,开展了以贝类为主的多参数综合观测实验。该研究成果表明实验室致力于碳中和研究取得了阶段性进展。下一步,实验室将继续深入探索典型养殖品种(如大型藻类等)的碳汇潜力,为综合评估我国渔业碳汇水平提供科学支撑。

    创新(培育)团队成员叶旺旺助理研究员为本文第一作者、团队首席科学家詹力扬研究员为通讯作者。其他作者包括创新(培育)团队其他核心成员和工程中心徐长安研究员。该研究受到所基科费、国家自然科学基金和福建省自然科学基金的资助。

    论文来源:

    Ye W., Sun H., Li Y., Zhang J., Zhang M., Gao Z., Yan J., Liu J., Wen J., Yang H., Shi J., Zhao S., Wu M., Xu S., Xu C., Zhan L*. Greenhouse gas emissions from fed mollusk mariculture: A case study of a Sinonovacula constricta farming system. Agriculture, Ecosystems & Environment, 2022, 336: 108029.

    论文链接:

    https://www.sciencedirect.com/science/article/pii/S0167880922001785

  • 原文来源:https://www.fio.org.cn/news/news-detail-10423.htm
相关报告
  • 《海洋所在海洋物理-生物地球化学等多圈层耦合模式及海洋生物加热效应影响气候机制方面取得新进展》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:mall
    • 发布时间:2018-09-20
    • 近日,中国科学院海洋所张荣华研究员团队在热带太平洋大气 - 海洋物理和生物地球化学等多圈层耦合模式、海洋生物引发加热过程及其气候效应研究方面取得新进展,研究成果分别在 Journal of Climate, Journal of Advances in Modeling Earth Systems 和 Scientific Report 等期刊发表。   热带太平洋存在复杂的多圈层相互作用,其中海洋 - 大气相互作用产生的厄尔尼诺 - 南方涛动( El Ni?o and Southern Oscillation, 简称 ENSO ) 现象,是导致全球气候年际异常的主要因素之一。然而,当前对 ENSO 的数值模拟和预报仍存在很大的不确定性和模式误差,这与一些相关过程和机制未能在模式中有很好的表征有关,海洋物理与生物地球化学过程之间的相互作用就是其中之一。例如,海洋浮游植物中的叶绿素可以吸收和调制进入海洋上层的太阳辐射,进而改变太阳辐射在海洋上层中的转递和分配,并可最终影响气候系统。 图1 热带太平洋混合型大气- 海洋物理和生物地球化学耦合模式(HCM-AOPB)   基于此,张荣华研究员团队率先构建了基于卫星资料的统计模型来表征海洋生物过程引发的加热效应,将统计模式进一步拓展至过程表征模式,并自主发展了针对热带太平洋的混合型大气 - 海洋物理和生物地球化学耦合模式 ( 图 1) 。该模式能够真实 表征海洋物理与生物地球化学过程之间的相互作用,通过模式的敏感性试验发现,海洋叶绿素引发的加热效应会削弱 ENSO 约 20% 的振幅并改变其周期,从而形成对 ENSO 的负反馈效应。此外 , 该研究还揭示了海洋生物加热效应影响气候的一种新机制 : 叶绿素主要通过影响穿透过混合层底的太阳辐射,从而进一步改变上层海洋层结和混合强度等海洋动力过程来间接实现,所发现的间接动力机制不同于以往关于叶绿素在混合层内吸收太阳辐射并直接加热混合层以影响气候系统的观点。   科研团队将基于卫星数据所构建的海表面温度和叶绿素浓度年际异常之间的统计模型引入到国际上广泛使用的 NCAR-CESM 模式中,以表征热带太平洋生物加热过程所引发的气候效应,从而有效改善了 NCAR-CESM 对 ENSO 的模拟(原 CESM 模拟的 ENSO 振幅明显偏强,图 2 ),这为改进气候模式对 ENSO 的模拟提供了新的思路。研究发展的混合型大气 - 海洋物理和生物地球化学耦合模式( HCM-AOPB )以及相应的统计模式,为表征海洋生物和物理相互作用以及对 ENSO 调制等提供了一个经济有效的数值模拟平台和预报工具,为解释 ENSO 可变性和多样性提供了新的框架。   该研究由中国科学院海洋所张荣华研究员和博士研究生田丰、北京师范大学王秀君教授、中国民用航空飞行学院康贤彪博士、海洋所高川博士和美国马里兰大学朱杰顺博士等合作完成。研究得到了中国科学院战略性先导科技专项、国家自然科学基金、青岛海洋国家实验室、 山东省泰山学者和自主创新计划以及青岛市领军人才计划 等项目资助。   相关文章:   1. Zhang R-H, Tian F , Wang X (2018) Ocean Chlorophyll-Induced Heating Feedbacks on ENSO in a Coupled Ocean Physics–Biology Model Forced by Prescribed Wind Anomalies. J Clim 31(5):1811–1832. (JCR Q1 , IF=4.661)   https://journals.ametsoc.org/doi/10.1175/JCLI-D-17-0505.1   2. Zhang R-H, Tian F , Wang X (2018) A New Hybrid Coupled Model of Atmosphere, Ocean Physics and Ocean Biogeochemistry to Represent Biogeophysical Feedback Effects in the Tropical Pacific. J Adv Model Earth Syst. doi:10.1029/2017MS001250. (JCR Q1 , IF=3.970)   https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2017MS001250   3. Kang X, Zhang R-H, Gao C , Zhu J (2017) An improved ENSO simulation by representing chlorophyll-induced climate feedback in the NCAR Community Earth System Model. Sci Rep 7(1):17123. (IF=4.122)   https://www.nature.com/articles/s41598-017-17390-2
  • 《海洋试点国家实验室在海洋热浪研究领域取得重要成果》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:liguiju
    • 发布时间:2022-02-08
    • 海洋热浪(Marine Heatwaves)是海表温度异常高的极端事件,严重影响海洋生态系统,会导致珊瑚白化、渔业减产和有害藻化等,造成生态和社会经济损失。大型海洋生态系统面积覆盖全球海洋约22%,但占全球渔业渔获量的95%。然而,由于这些生态系统多位于传统低分辨率气候模式模拟存在偏差的沿海地区,目前学界对于气候变化如何影响这些生态系统上的海洋热浪仍知之甚少。近日,由海洋试点国家实验室海洋动力过程与气候功能实验室张绍晴教授、高阳教授带领的科研团队利用海洋试点国家实验室在国产众核“神威”超算上创建的上千年高分辨率地球系统模式积分数据,取得关于海洋热浪研究的创新性成果。 该研究首次使用25公里大气和10公里海洋的高分辨率地球系统模式模拟预估未来气候变化情景, 并采用新的“未来阈值”(即高于未来海温长期平均变化的异常变暖)来分析未来气候变化情景下大型海洋生态系统区域海洋热浪的变化。结果表明,高分辨模式显著提高了对海洋热浪的模拟能力。 生物可能会在一定程度上适应气候变化,但适应速率在物种之间有很大的差异,使用“未来阈值”是假设生物能够适应全球平均变暖。本研究发现使用“未来阈值”下大多数大型生态系统遭遇未来海洋热浪的强度和年天数都在增加。这意味着即使假设生态系统内的生物能够基本适应长期平均变暖的影响,它们仍将面临全球变暖的严重威胁。 鉴于海洋热浪带来的巨大经济社会危害,预测气候变化背景下其变化有广泛而深远的意义。我们的研究结果显示沿海生态系统将面临海洋热浪持续性威胁,这一结果具有深远的生态、经济和社会影响,并为受影响地区的管理决策者制定应对措施和战略规划提供了科学依据。国际气候研究领域顶级学术期刊Nature Climate Change(自然·气候变化)于2022年2月3日对该项创新成果进行了题为“Threat by marine heatwaves to adaptive large marine ecosystems in an eddy-resolving model(基于涡解析模式海洋热浪对适应性大型海洋生态系统的威胁)”的线上报道,该成果由海洋动力过程与气候功能实验室高阳教授和张绍晴教授为共同通讯作者,海洋试点国家实验室主任委员会主任吴立新院士、海洋生态与环境科学功能实验室高会旺教授等为合著者的科研团队共同完成。 高分辨率地球系统模式的发展提高了对海洋热浪和涡旋的模拟能力,为气候变化和中小尺度极端事件的机理揭示和过程再现提供了有力工具。此项成果是海洋试点国家实验室在海洋极端事件与气候变化研究领域取得的重要进展,彰显了海洋试点国家实验室在该领域的国际前沿地位。高分辨率地球系统模式上千年模拟及预估数据是海洋试点国家实验室前期利用国产众核“神威”超算对通用地球系统模式进行算法改进和优化而创建,是海洋试点国家实验室为推动地球科学自主创新发展、助力海洋强国战略实施所作不懈努力的重要体现。 原文链接:https://www.nature.com/articles/s41558-021-01266-5