《CST Global将硅光子激光器的产量提高了500%》

  • 来源专题:集成电路
  • 编译者: Lightfeng
  • 发布时间:2017-08-14
  • III-V光电晶圆复合半导体技术全球有限公司表示,其硅光子激光器的产量比去年同期增加了500 %。 “CST Global提供用于硅波导的激光器。这些是集成的,基于光纤和电子的基于微芯片的组件,用于增加现有光纤网络的光信号处理能力以及数据速率容量,”销售和营销副总裁Euan Livingston说。他补充说:“硅波导技术使数据传输速率提高了10倍,代表了一种高性价比的升级方法,可以升级现有的光纤网络基础设施。” “CST Global制造的硅光子激光器最常用于数据中心和城域网升级,”Livingston继续说道。 “专用设备生产增加500%,清楚地表明硅光子网络升级市场已经牢固地建立并迅速部署。”
相关报告
  • 《OpenLight推出全球首个集成激光器的开放式硅光子平台》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2022-06-17
    • 6月7日,光子学代工初创企业OpenLight推出了全球首个集成激光器的开放式硅光子平台。该平台达到了激光集成和可扩展性的水平,能够加速高性能光子集成电路(PICs)的开发,应用领域包括电信、数据通信、激光雷达、医疗保健、人工智能和光计算。 OpenLight是今年4月份EDA软件工具开发平台Synopsys和网络通讯设备公司Juniper Networks刚宣布成立的一家独立企业。该公司提供开放的硅光子学平台,以满足包括医疗保健、电信、激光雷达和量子计算等应用领域日益增长的光子需求。 据悉,OpenLight将使用塔尔半导体(Tower Semiconductor)集成激光器的工艺,而该工艺已通过塔尔半导体PH18DA生产工艺的认证和可靠性试验。 OpenLight预计首个开放的多项目晶圆(MPW)设备将在2022年夏天搭载PH18DA工艺以及400G和800G参考设计,并使用集成激光器。 当下,激光集成(包括制造、组装和校准这些激光器)以及与离散激光器应用不仅成本高昂,且耗时耗人力,这成为了硅光子学面临的一大挑战。随着激光通道数量和总带宽的增加,对其进行集成正变得越来越重要。 PH18DA平台能够提供的独特关键价值在于,它能够通过直接在硅光子晶圆上处理磷化铟(InP)材料,减少安装激光器的成本和时间,并且可以实现产量的扩容、提高功率效率。此外,单片集成激光器提高了该平台整体的可靠性,简化了封装过程。 它的芯片设计采取了“开放”组合,这些组合基于独特的集成激光器。OpenLight开发了光子芯片设计的模块化模板,重点是集成InP激光器,工作在1310-1550纳米之间。客户可以使用这些PDK来开发已经验证过的芯片设计。 Synopsys副总裁Aveek Sarkar表示:“OpenLight通过实现可扩展的可插电和共封装光学激光器集成,为新一代硅光子学铺平了道路。Synopsys统一的电子和光子设计解决方案与OpenLight创新的硅光子平台结合,将大大加快光子集成电路的发展。” OpenLight开放平台包括了集成激光器、光放大器、调制器、光电探测器等关键光子器件,形成低功率、高性能光子集成电路的完整解决方案。此外,OpenLight还提供了部分PIC设计和设计服务,以加快产品上市的时间。 硅光子学是目前正蓬勃发展的一项技术,在这种技术下,数据通过光学射线在计算机芯片之间传输,可以以比传统电子电路更快的速度携带更多的数据。此外,硅光子学比电导体消耗更少的能量和产生更少的热量。因此,它是更节能和成本效益。根据Markets and Markets的报告,硅光电子市场预计将以26.8%的复合年增长率增长,到2027年将从2021年的11亿美元增至46亿美元。
  • 《芯片大小的激光器或将取代光纤激光器》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2024-06-26
    • 近日,来自洛桑联邦理工学院(EPFL)的研究人员开发了一种芯片集成的掺铒波导激光器,这一新型激光器的性能接近光纤激光器的性能,结合了可调谐性和芯片级光子集成的实用性。 众所周知,光纤激光器使用掺杂稀土元素的光纤作为增益介质。因此与二氧化碳等气体激光器相比具备了高光束质量、高功率、高效率、尺寸小以及光纤输出与柔性加工平台的无缝融合等优势。 而为了满足对芯片级光纤激光器的需求,研究人员转向铒作为增益介质。铒基光纤激光器满足保持高相干性和稳定性的要求而特别有前景。但长期以来,由于难以保持其特有的高性能,铒基光纤激光器小型化一直难以实现。 为此,研究人员首先基于超低损耗氮化硅光子集成电路构建了一米长的片上光腔。洛桑联邦理工学院光子学和量子测量实验室的研究员Yang Liu认为:尽管芯片尺寸紧凑,但我们能够将激光腔设计为米级长度,这要归功于这些微环谐振器的集成,这些谐振器有效地扩展了光路,而无需物理放大器件。 重大突破!芯片大小的激光器或将取代光纤激光器? 然后,该团队在电路中植入了高浓度的铒离子,以选择性地产生激光所需的有源增益介质。最后,他们将电路与III-V族半导体泵浦激光器集成在一起,以激发铒离子,使它们能够发光并产生激光束。 为了改进激光器的性能并实现精确的波长控制,研究人员设计了一种创新的腔内设计,其特点是基于微环的游标滤光片,这是一种可以选择特定频率光的滤光片,以提高激光器的性能并实现精确的波长控制。 该滤光片允许在C波段和L波段内对40 nm的激光波长进行动态调谐,这在调谐和低光谱杂散指标方面都超过了传统的光纤激光器,同时保持与当前半导体制造工艺的兼容性。该设计支持稳定的单模激光,固有线宽为50Hz。 芯片级铒基光纤激光器的输出功率超过10 mW,侧模抑制比大于70 dB,性能优于许多传统激光器。其窄线宽使其能够发出纯净而稳定的光,非常适合传感、陀螺仪、激光雷达和光学频率计量等相干应用。 将铒光纤激光器缩小并整合到芯片级设备中可以使其变得更加经济实惠,为消费电子、医疗诊断和电信领域高度集成的移动系统开辟新的应用。它还可以缩小其他几个应用中的光学技术,包括激光雷达、微波光子学、光频率合成和自由空间通信。