《Nature | 电鱼的集体感知》

  • 来源专题:战略生物资源
  • 编译者: 李康音
  • 发布时间:2024-03-07
  • 2024年3月6日,哥伦比亚大学的研究人员在Nature杂志发表题为Collective sensing in electric fish的文章。

    许多有机体,包括海豚、蝙蝠和电鱼,拥有复杂的主动感觉系统,它们使用自发信号(例如,声音或电子发射)来探测环境。社会群体中的主动感知研究通常集中在尽量减少同种排放物干扰的策略上。然而,众所周知,从工程上说,多个空间分布的发射器和接收器可以大大提高环境传感(如多基地雷达和声纳)。

    该研究从建模、神经记录和行为实验中提供证据,证明非洲弱电鱼类利用同种彼氏锥颌象鼻鱼的电脉冲扩大其电定位范围、辨别物体和增加信息传输。这些结果为一种新的集体主动感知模式提供了证据,在这种模式中,个体的感知被附近群体成员的能量释放所增强。

  • 原文来源:https://www.nature.com/articles/s41586-024-07157-x
相关报告
  • 《Nature | 昆虫味觉受体对糖的感知的分子基础》

    • 来源专题:战略生物资源
    • 编译者:李康音
    • 发布时间:2024-03-08
    • 2024年3月6日,耶鲁大学的研究人员在Nature发表题为The molecular basis of sugar detection by an insect taste receptor的文章。 动物渴望糖是因为它们的能量潜力和品尝甜味的愉悦感。然而,并非所有的糖在代谢上都是相同的,这就需要检测和区分化学上相似的甜味物质的机制。昆虫使用一组嗜电性味觉感受器来辨别糖,每一个感受器都被特定的甜分子选择性地激活。 为了深入了解糖选择性的分子基础,研究人员确定了家蚕(Bombyx mori, BmGr9)的味觉受体Gr9在其唯一激活配体D -果糖缺失和存在的情况下的结构。这些结构,以及结构引导的诱变和功能分析,说明了D-果糖是如何被一个配体结合口袋包裹的,这个口袋精确地匹配了D-果糖中化学基团的整体形状和模式。然而,该研究的计算对接和实验结合分析显示,其他糖也可以结合BmGr9,但它们不能激活受体。 研究人员确定了BmGr9与一种非激活糖L-sorbose复合物的结构。虽然这两种糖结合的位置相似,但只有D-果糖能够连接两个保守芳香残基的桥梁,将口袋与孔螺旋连接起来,引起构象变化,使离子传导孔打开。因此,化学特异性并不仅仅依赖于配体结合袋的选择性,而是由受体-配体相互作用和变构耦合的结合而产生的一种新特性。该研究结果支持一个模型,即粗略的受体调节来自于口袋的大小和化学特性,而受体激活的微调是通过调节离子传导的变构途径的选择性参与来实现的。
  • 《流感来袭!哈佛学者Nature论文揭秘大脑是如何感知流感并命令身体休息的》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2023-03-14
    • 近期,流感来势汹汹,全国多地的流感阳性率持续上升,其变化趋势线几乎拉成陡峭上升的直线。事实上,流感一直是全世界住院和死亡的重要原因,据世界卫生组织(WHO)报告,全球每年约有10亿人感染流感,其中重症病例约300-500万,死亡病例可达29-65万。 值得注意的是,包括流感、新冠在内的呼吸道感染通常表现出共同的行为和生理反应,包括发烧、嗜睡、食欲不振、头痛和情绪低迷。这表明,人体中很可能存在一种因病毒感染的触发的共同通讯回路,使得大脑能迅速意识到体内的病毒感染并作出反应。然而,一直以来,这种特殊的疾病感应机制未被阐明。 2023年3月8日,哈佛大学医学院的研究人员在国际顶尖学术期刊 Nature 上发表了题为:An airway-to-brain sensory pathway mediates influenza-induced sickness 的研究论文。 该研究发现,哺乳动物呼吸道中的一组GABRA1神经元通过表达的前列腺素E2受体3(EP3),一旦感知到流感病毒感染产生的前列腺素E2(PGE2),就会向大脑传递信号,引发常见的流感症状。而当GABRA1神经元功能受损或抑制其EP3,都能够减轻流感早期的症状(包括食欲降低、活动减少等),并提高其生存率。 这些结果表明,人类和哺乳动物存在一些特殊的“疾病神经元”,可以感知病毒感染,并通知大脑产生相应的疾病症状。 人们总是害怕生病,但不幸的是,不少人在一年之中会因为病原体感染而生病好几次。虽然我们知道生病是什么感受——发烧、流鼻涕等等,但一直不清楚大脑是如何意识到体内有感染的。 此前,科学家们通常认为,信使分子会从感染部位产生并通过血液进入大脑,直接激活启动疾病行为程序的大脑区域,而前列腺素E2(PGE2)正是这种在感染组织中产生的信使分子。因此,阻断PGE2产生的药物——阿司匹林和布洛芬等一直被用于控制疾病症状。这也提出了一种可能性,即存在专门检测前列腺素的“疾病神经元”,但这种神经元细胞的身份一直未被揭晓。 在这项最新研究中,研究团队首先观察到,小鼠感染流感也会导致一些与人类相同的疾病症状,并且当他们使用阿司匹林、布洛芬以及一种靶向前列腺素受体(EP3)的抑制剂治疗感染小鼠时,可以缓解这些症状。基于此,作者提出EP3可能存在于某种特殊的“疾病神经元”上,这些神经元会感应前列腺素并通知大脑呼吸道中存在病毒感染。 为了探索这一点,研究团队构建了基因工程小鼠,其某些类型的神经元中特异性敲除了EP3。研究团队发现,小鼠体内一小群GABRA1神经元在敲除编码EP3受体的基因之后,破坏了对流感感染的疾病反应。与此同时,选择性地杀死GABRA1神经元同样也会减少感染小鼠的疾病行为。 有意思的是,这种神经元位于小鼠的颈部,从扁桃体延伸到脑干,而扁桃体区域是外部空气和气道内空气交汇的界面。该区域富含免疫细胞,当它们遇到病原体时会大量产生前列腺素。 这些结果表明,GABRA1神经元在呼吸道感染中发挥着重要功能——用于检测病毒感染引起的前列腺素水平升高,并将被感染的信号发送到大脑,进而引起相关的疾病行为。 神经系统和循环系统是各组织器官之间的重要通讯途径,但就速度而言,如果说神经传递是飞机速运,那么循环系统就像是慢吞吞的货船,两者不能同日而语。因此,神经系统能做到循环系统难以胜任的事情——迅速、及时地向大脑提供感染发生的确切位置的信息。 论文通讯作者 Stephen Liberles 教授表示,许多其他类型的神经元都有前列腺素和其他免疫相关信号受体,因此可能还存在其他的“疾病神经元”,可以感知除呼吸道之外的其他组织的感染,例如引发恶心、呕吐的肠道感染。 从这一点来看,疾病更像是大脑精心策划的一种行为状态!这也引发了一个疑问——为什么生物要进化出这种机制?不生病难道不是更好吗?科学家们认为,疾病行为是具有进化优势,例如它可以减少患者走动,加速恢复并防止病原体在人群中传播。 当然,这项研究并没有说明全部情况,GABRA1神经元只在流感感染的第一阶段起作用,这一阶段影响上呼吸道,持续大约一周。Stephen Liberles 教授指出,当流感病毒感染下呼吸道之后,另一条神经通路会接管了驱动疾病行为的工作,而这时的疾病症状(例如白肺)明显更严重。如果能找到一种方法来阻断第二种途径,那对治疗呼吸道感染的重症患者无疑是巨大的医学突破。