《Science,12月4日,De novo design of potent and resilient hACE2 decoys to neutralize SARS-CoV-2》

  • 来源专题:COVID-19科研动态监测
  • 编译者: zhangmin
  • 发布时间:2020-12-23
  • De novo design of potent and resilient hACE2 decoys to neutralize SARS-CoV-2
    View ORCID ProfileThomas W. Linsky1,*, View ORCID ProfileRenan Vergara1,*, View ORCID ProfileNuria Codina1,*, View ORCID ProfileJorgen W. Nelson1,*, View ORCID ProfileMatthew J. Walker1, View ORCID ProfileWen Su...

    Science  04 Dec 2020:
    Vol. 370, Issue 6521, pp. 1208-1214
    DOI: 10.1126/science.abe0075

    Abstract
    We developed a de novo protein design strategy to swiftly engineer decoys for neutralizing pathogens that exploit extracellular host proteins to infect the cell. Our pipeline allowed the design, validation, and optimization of de novo human angiotensin-converting enzyme 2 (hACE2) decoys to neutralize severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The best monovalent decoy, CTC-445.2, bound with low nanomolar affinity and high specificity to the receptor-binding domain (RBD) of the spike protein. Cryo–electron microscopy (cryo-EM) showed that the design is accurate and can simultaneously bind to all three RBDs of a single spike protein. Because the decoy replicates the spike protein target interface in hACE2, it is intrinsically resilient to viral mutational escape. A bivalent decoy, CTC-445.2d, showed ~10-fold improvement in binding. CTC-445.2d potently neutralized SARS-CoV-2 infection of cells in vitro, and a single intranasal prophylactic dose of decoy protected Syrian hamsters from a subsequent lethal SARS-CoV-2 challenge.

  • 原文来源:https://science.sciencemag.org/content/370/6521/1208
相关报告
  • 《12月4日_从头设计有效和有弹性的hACE2诱饵以中和SARS-CoV-2》

    • 来源专题:COVID-19科研动态监测
    • 编译者:zhangmin
    • 发布时间:2020-12-23
    • Science期刊于12月4日发表了美国一家生物制药制药公司Neoleukin Therapeutics和香港大学李嘉诚医学院等机构的的文章“De novo design of potent and resilient hACE2 decoys to neutralize SARS-CoV-2”。研究人员开发了一种从头合成蛋白质设计策略,以快速设计诱饵来中和利用细胞外宿主蛋白感染细胞的病原体。该团队的方法可以设计、验证和优化新的人类血管紧张素转换酶2(hACE2)诱饵来中和SARS-CoV-2。最好的单价诱饵CTC-445.2可以以低纳摩尔亲和力与刺突蛋白的受体结合域(RBD)高特异性结合。低温电子显微镜(cryo-EM)表明,该设计是准确的,可以同时结合单个刺突蛋白的所有三个RBD。由于该诱饵复制了hACE2中刺突蛋白的靶标界面,因此对病毒突变逃逸具有内在的弹性。 二价诱饵CTC-445.2d显示结合力提高了约10倍。CTC-445.2d在体外有效中和了细胞的SARS-CoV-2感染,单次鼻内预防剂量的诱饵保护了叙利亚仓鼠免受随后的致命SARS-CoV-2攻击。 原文链接:https://science.sciencemag.org/content/370/6521/1208
  • 《Science,9月9日,De novo design of picomolar SARS-CoV-2 miniprotein inhibitors》

    • 来源专题:COVID-19科研动态监测
    • 编译者:zhangmin
    • 发布时间:2020-09-16
    • De novo design of picomolar SARS-CoV-2 miniprotein inhibitors View ORCID ProfileLongxing Cao1,2, Inna Goreshnik1,2, View ORCID ProfileBrian Coventry1,2,3, View ORCID ProfileJames Brett Case4, View ORCID ProfileLauren Miller1,2, Lisa Kozodoy1,2, Rita E. Chen4,5, View ORCID ProfileLauren Carter1,2, View ORCID ProfileAlexandra C. Walls1, Young-Jun Park1, View ORCID ProfileEva-Maria Strauch6, View ORCID ProfileLance Stewart1,2, View ORCID ProfileMichael S. Diamond4,7, View ORCID ProfileDavid Veesler1, View ORCID ProfileDavid Baker1,2,8,* See all authors and affiliations Science  09 Sep 2020: eabd9909 DOI: 10.1126/science.abd9909 Abstract Targeting the interaction between the SARS-CoV-2 Spike protein and the human ACE2 receptor is a promising therapeutic strategy. We designed inhibitors using two de novo design approaches. Computer generated scaffolds were either built around an ACE2 helix that interacts with the Spike receptor binding domain (RBD), or docked against the RBD to identify new binding modes, and their amino acid sequences designed to optimize target binding, folding and stability. Ten designs bound the RBD with affinities ranging from 100pM to 10nM, and blocked ARS-CoV-2 infection of Vero E6 cells with IC 50 values between 24 pM and 35 nM; The most potent, with new binding modes, are 56 and 64 residue proteins (IC 50 ~ 0.16 ng/ml). Cryo-electron microscopy structures of these minibinders in complex with the SARS-CoV-2 spike ectodomain trimer with all three RBDs bound are nearly identical to the computational models. These hyperstable minibinders provide starting points for SARS-CoV-2 therapeutics.