《我国科学家实现单离子超分辨成像》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心—领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2021-12-28
  • 记者27日从中国科学技术大学获悉,该校郭光灿院士团队在冷原子超分辨成像研究中取得重要进展,该团队李传锋、黄运锋、崔金明等人在离子阱系统中实现单离子超分辨成像。该成果日前发表于《物理评论快报》。

      冷原子系统包括离子阱中囚禁的离子和光场中囚禁的原子等,是研究量子物理的理想实验平台,也是量子模拟、量子计算和量子精密测量实验研究的重要物理系统。冷原子系统中的核心实验技术之一是高分辨单粒子成像。近十年来,冷原子系统的显微成像技术飞速发展,涌现出量子气体显微镜、光镊原子阵列、高分辨率囚禁离子成像等先进技术。然而,受限于光学衍射极限,这些技术分辨率只能达到光学波长量级,研究波函数细节相关的量子现象需要光学超分辨成像。此前,国际上对单原子(离子)直接的超分辨成像尚未取得进展。

      中国科学技术大学团队借鉴经典成像领域的受激耗尽超分辨成像方法,结合冷原子系统的原子量子态初始化和读取技术,首次在离子阱中实现单个离子的超分辨成像。实验结果表明,该成像方法的空间分辨率可超越衍射极限一个量级以上,利用数值孔径仅为0.1的物镜即可实现175纳米的成像分辨率。为了进一步展示该方法的时间分辨率优势,团队同时实现了50纳秒的时间分辨率和10纳米的单离子定位精度,并清晰地拍摄了囚禁离子在离子阱中的快速简谐震荡,理论上通过相关操作可将空间分辨率提高至10纳米以下。

      这一实验技术可扩展到冷原子系统的多体和关联测量。审稿人认为,该工作“填补了此前缺失的精密测量原子位置的重要工具,有潜力对高频运动的单个运动量子实现空间分辨”。

相关报告
  • 《我科学家首次实现亚分子分辨的单分子光致荧光成像》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2020-08-12
    • 记者从中国科学技术大学获悉,该校侯建国院士团队的董振超研究小组,在世界上首次实现了亚分子分辨的单分子光致荧光成像,为在原子尺度上展显物质结构、揭示光与物质相互作用本质提供了新的技术手段。该成果于8月10日在国际知名学术期刊《自然·光子学》上。 用光实现原子尺度空间分辨一直是纳米光学领域追求的终极目标之一。扫描近场光学显微镜(SNOM)的出现点燃了实现这一目标的希望,然而,荧光发射与拉曼散射过程不同,分子荧光在金属结构非常靠近分子时会由于非辐射过程被放大并占主导而导致荧光信号被淬灭,这极大限制了近场荧光显微镜的分辨率发展,也是迄今为止SNOM荧光成像空间分辨率很少达到10纳米左右水平的根本原因。 针对以上挑战,该团队对等离激元纳腔结构进行了进一步的精细调控,特别是探针尖端原子级结构的制作与控制。他们通过精致的针尖修饰方法在探针尖端构筑了一个原子尺度的银团簇突起结构,并将纳腔等离激元共振模式调控到与入射激光和分子发光的能量均能有效匹配的状态,再采用超薄的三个原子层厚的介电层隔绝分子与金属衬底的电荷转移,从而成功实现了亚纳米分辨的单分子光致发光成像。 他们惊喜地发现,当探针逼近分子时,即便间距在一纳米以下,光致发光的强度还是一直在随间距的变小而单调增强,通常存在的荧光淬灭现象完全消失。这充分保证了这项技术发明的普适性,为广泛应用于物理、化学、材料、生物等领域提供了坚实的基础。 这些研究结果实现了扫描近场光学显微领域长期期待的用光解析分子内部结构的目标,为在亚纳米尺度上探测和调控分子局域环境、以及光与物质相互作用提供了新的技术方法,对于近场光谱学和显微学的基础认知与技术发展都至关重要。
  • 《我国科学家设计了一种超灵敏双信号响应的电子皮肤》

    • 来源专题:新一代信息技术
    • 编译者:张卓然
    • 发布时间:2023-06-07
    •   近年来,科学家对电子皮肤的研究已经超出了模仿人类皮肤的范围,开发出更多迷人的功能,如通过整合应变和压力刺激的交互式可视化来超越人类的感官功能。近期,香港理工大学的研究人员设计了一种能够通过人类可读结构色的交互反馈来响应复杂刺激的柔性光学/电学皮肤(OE-Skin)。研究成果发表在《ACS Nano》期刊,论文的标题为“Mechanochromic Optical/Electrical Skin for Ultrasensitive Dual-Signal Sensing”。   该研究团队通过模仿变色龙的结构颜色和蜘蛛的微裂纹结构,设计了一种高灵敏度的光/电双信号电子皮肤(OE-Skin),其能准确检测并交互反馈拉伸应变、正常压力和复杂的触觉感知。OE-Skin由一个离子电极、一个弹性介电层、一个含有光子晶体的色差层和一个导电的碳纳米管/MXene层组成。电极/电介质层起到电容式压力传感器的作用。嵌入在明胶/聚丙烯酰胺可拉伸水凝胶膜中的氧化铁?碳磁阵列机械色子晶体可以对平面内的拉伸和正常压力做出反应,实现从暗红色(680 nm)到紫色(430 nm)的全可见光谱中发出明亮的颜色切换光学信号。底层的微裂纹导电层用于超灵敏的应变感知,在300%应变的宽工作范围内,其灵敏系数(GF)高达191.8。多层OE-Skin为电容式压力感知提供了超快、准确的响应,检测极限低至65 Pa,反应速度快至126 ms,并能稳定运行5000次;同时,通过整合光学结构颜色的空间分布以及电阻和电容的电信号,OE-Skin能够以较高的时空分辨率和定量的电学数字化来可视化复杂变形的应力分布。   该研究提出的OE-Skin为下一代多功能传感器设计提供了一种新的思路。   注:此研究成果摘自《ACS Nano》杂志,文章内容不代表本网站观点和立场,仅供参考。