《浅析智能机床发展》

  • 来源专题:数控机床与工业机器人
  • 编译者: 杨芳
  • 发布时间:2017-11-21
  • 现代制造业竞争力强弱,突出表现在是否充分利用新兴信息化技术提升工业的智能化应用水平。因此,制造业将信息技术不断深入应用到产品设计、生产、装配和服务的各个环节。智能机床正是在信息技术不断深入应用下的产物。它利用传感技术和基于大数据的知识储备,实现智能操控和决策,成为智能工厂乃至智能制造的重要组成部分。

    智能机床发展

    如何定义智能机床,它能解决那些问题?通过对国内外智能机床的了解,我们认为它需要明确四个问题,即目标、感知、决策和执行。在目标明确下,智能机床能对自己进行监控,可自行分析众多与加工状态环境的相关因素,最后自行采取应对措施来保证最优化的加工效果。简单地说,机床可自适应柔性和高效生产系统的要求,如实现生产线自动控制、工件自动调度、自动监控,部分关键工序实现工件质量自动检测,刀具实现在线磨损监控,自动补偿和自动报警等。

    国外智能机床的发展趋势

    在国外众多智能机床中,我们撷取特点突出的三家公司的产品进行简要介绍。

    MAZAK 公司的“Smooth Technology”(流畅技术)体现了智能机床的最新发展。其数控系统MAZATROL Smooth配备Windows8 PC的数控系统以及先进软件,极大地提高了加工效率。通过控制直线轴和转动轴的最佳加速度,使5轴联动加工的效率提高30%;利用简单调谐功能,可根据加工工件自由调整加速度、转角精度、平滑度等参数,使之最优化。客户自身可简单方便地进行加工时间优先、加工面精度优先、或加工形状优先等个性化选择。此外,还具有“全面工厂经营支持”功能:通过开放的系统结构设计,借助智能手机、平板电脑等外部终端对设备的运转状况进行监控。

    机床在运行过程中,振动和温升往往是影响加工质量和加工效率的因素。大隈公司的OSP系统针对这两个问题开发的智能模块,通过抑制温升保证了加工稳定性;通过选择振动区间,保证了零件精度和表面光洁度;通过模拟加工条件,避免撞击,保障加工安全的同时大幅缩短停机准备时间。

    以下就主要智能技术模块做一简单介绍。

    振动智能模块

    机床的各坐标轴加、减速时产生的振动,直接影响加工精度、表面粗糙度、刀尖磨损和加工时间,主动振动控制模块可使机床振动减至最小。例如,日本MAZAK公司智能机床,在采用主动振动控制技术后,进给量为3000mm/min,加速度为0.43g时,振幅由4μm减至1μm,见图1、图2。

    再如大隈公司开发的Machining Navi工具。利用轴转速与振动之间振动区域(不稳定区域)和不振动区域(稳定区域)交互出现这种周期性变化,搜索出最佳加工条件,最大限度地发挥机床与刀具的能力。这个模块具有2项铣削和1项车削智能加工条件搜索。

    其中铣削功能Machining Navi M-i是针对铣削主轴转速的自动控制。工作流程为:自动进行传感器振动测定—最佳主轴转速计算—主轴转速指令的变更。

    另外一个铣削功能Machining Navi M-g是铣削主轴转速优化选择。根据传感器收集的振动音频信号,将多个最佳主轴转速候补值显示在画面上,然后通过触摸变更到所显示的最佳主轴转速,便可快捷地确认其效果。

    此外,应用在车床的技术Machining Navi L-g通过调节主轴转速和变化频率,按照最佳的幅度和周期变化,从而抑制车削时的加工振动。车削主轴转速的自动控制则通过自动调节主轴,达到最佳车削效果。下图显示使用Machining Navi L-g前后对比情况。

    智能热补偿系统ITC

    高速加工中不可避免会产生大量热量,即便在机械结构和冷却方式上作相关处理,但仍然不能百分之百解决问题。所以在高度精确的加工中,机床操作人员通常需要在开机后等上一段时间,待机床达到热稳定状态后再开始加工,或者在加工过程中人为地输入补偿值来调整热漂移。

    瑞士米克朗公司通过长期对切削热对加工造成影响的研究,积累了大量的经验数据。内置了这些经验值的智能热控制模块能自动处理温度变化造成的误差,图6。

    大隈公司考虑到工件的加工精度会因“机床周围的温度变化”、“机床产生的热量”、“加工产生的热量”出现较大变化,提出了Thermo-Friendly Concept热亲和概念,并借助机床结构的高精度热位移补偿技术,热位移结构对称技术、温度分布均匀分布设计,使用户不必采取特殊措施,便能在普通的工厂环境中实现高精度加工。

    在机床结构的设计上,大隈采用了对称结构、箱式组合结构和热均衡结构,如下图。

    大隈公司的高精度热变形补偿技术包括主轴热位移控制Thermo Active Stabilizer-Spindle,简称TAS-S和环境热位移控制Thermo Active Stabilizer-Condition,简称TAS-C两项技术。

    主轴热位移控制技术针对主轴在旋转时和停止时会产生很大热位移的问题,它不仅令主轴产生变化,而且直接影响加工精度。TAS-S功能考虑到主轴温度、主轴旋转、主轴转速变化、主轴停止等各种状态,即使转速频繁发生变化,也能准确地控制主轴的热位移。

    在环境温度变化的情况下进行加工,加上机床构造的热位移、工件在工作台上的装卡位置以及工件大小都会影响加工尺寸。环境热位移控制功能TAS-C根据机床的热位移特性,利用布置恰当的传感器所感知的温度信息,和进给轴的位置信息,推测出机床构件的热位移,并进行准确补偿。

相关报告
  • 《金属切削机床的发展优势浅析》

    • 来源专题:数控机床与工业机器人
    • 编译者:杨芳
    • 发布时间:2018-03-19
    • 金属切削机床是机床中的一个重要分类,在加工生产中具有重要作用。从近几年数据来看,金属切削机床在机床产品中也是独占鳌头,可以说在一定程度上金属切削机床的发展趋势代表了机床行业的发展趋势。那么金属切削机床这个重要的机床大类在具有哪些发展优势?跟着小编一起来看看吧。 制造业发展 金属切削机床市场潜力巨大 从2017年开始,“中国制造2025 ”、“智能制造”、“工业4.0 ”等词语频繁出现在人们的眼前,而这些词语都在向我们传递一个信号:中国要大力发展制造业。机床作为工业母机,和众多行业有千丝万缕的关系。制造业发展,机床众多上下游迎来发展机遇,也给机床行业带来了一个庞大的潜在市场,其中由以金属切削机床表现最为明显。 根据2017年的数据来看,金属切削机床的产量相较于2016年增长了7.7%(2017年10月的数据)。机床行业处于回暖期,从这个角度看金属切削机床的增长势头在未来保持的可能性很大。而且从金属切削机床的下游来看,我国汽车、电子、船舶等行业处于上升阶段,对于金属切削机床的需求还有很大的增长空间。所以综合分析,未来金属切削机床的市场发展空间巨大。 政策支持 金属切削机床具有良好的发展环境 在2017年,多项政策指名发展机床行业。工信部在2017年年初发布的《国家新型工业化产业示范基地2017年工作要点》中明确指出要依托国家示范基地,发挥包括高档数控机床在内的十大领域在“四基”领域的重要作用。《国务院关于加快振兴装备制造业的若干意见》也提出了中国今后要重点发展的16个重大技术装备领域。这些政策中,无论是明确指出发展机床行业,还是发展如工业机器人 、船舶、轨道交通 等机床下游产业,都对机床的发展非常有利。政策的支持为机床行业创造了一个良好的发展环境。而机床行业的优势,无疑也是金属切削机床的发展优势。 应用范围广 自身竞争优势明显 前面分析了金属切削机床发展的外部有利因素,现在从金属切削机床自身分析看看。根据前瞻产业研究院整理的数据来看,金属切削机床在全球机床产品分布中占到了五成以上,足见其应用之广。事实上,金属切削机床的应用的确非常广泛,小到3C数码,大到航空航天,都能见到它的身影。广泛的应用范围带给了金属切削机床极大的市场耐性,单一行业市场波动很难对其产生较大的影响。这种特性给予了金属切削机床较强的市场竞争力,使它可以根据下游发展调整自己的产品针对性,从而保持自己的发展优势。 来自前瞻产业研究院 下游市场需求大,政策环境良好,自身应用范围也非常广,这些优势使得金属切削机床发展空间很大。如果我国金属切削机床能提高技术水平,更好的适应市场需求,相信在未来的发展会越来越好。.
  • 《张曙教授浅析智能机床发展现状及展望》

    • 来源专题:数控机床与工业机器人
    • 编译者:杨芳
    • 发布时间:2017-06-20
    • 智能机床是智能制造的基础。如今,机床智能化发展极大地推进了我国机床行业的发展,助推国产机床走向世界,创造了更多的价值。本文,同济大学现代制造技术研究所名誉所长张曙教授对智能机床的现状进行分析以及对未来的展望。以下为主要内容。   智能机床是智能制造的基础。机床智能化可分为3个方面:①机床部件本身,包括主轴单元、进给驱动、结构件的智能化,用以抑制振动和热变形补偿等;②数控系统智能化,从加工设备控制器进化到工厂网络的终端,生产数据能够自动采集,实现机床与机床、机床与各级管理系统的实时通信,使生产透明化,融入企业的组织和管理,缔造智能化工厂;③机床智能化和网络化为制造资源社会共享、构建异地的、虚拟的云工厂创造了条件,从而迈向共享经济新时代,创造更多的价值。   沈阳i5智能机床   传统的数控机床是按照G指令和M指令驱动机床部件,实现刀具与工件的相对运动,对机床的实际工作状态并无感知和反馈。机床在工作过程中,在切削力、惯性力、摩擦力以及内部和环境热载荷的作用下,产生变形和振动,导致刀具的实际路径偏离理论路径,降低加工精度、表面质量和生产效率。   智能机床的核心在于构建一个基于模型的闭环加工系统。借助温度、加速度和位移等传感器监测机床工作状态和环境的变化,实时进行调节和控制,优化切削参数,抑制或消除振动,补偿热变形,充分发挥机床的潜力。智能机床的另一功能是网络通信,它是工厂网络的一个节点,可实现机床之间和车间管理系统的相互通信,提高生产系统效率和效益。   智能主轴   智能主轴的特征是自主性、自学习、兼容性和开放性。从感知到决策到控制,再到执行是实现智能的四部曲。主轴的智能化分为两类:①与主轴结构相关,即对温度或热误差、主轴平衡、主轴健康的监控和控制,进而实现温度控制和热误差补偿、不平衡度监控和主动平衡、主轴元器件损坏和失效监控与基于主轴实际状态的预测维护。②与加工过程有关,对颤振、刀具状态、主轴干涉的监控和控制,从而实现颤振的辨识及抑制和控制、刀具磨损和破损监测、刀具变形补偿、有效预防干涉与碰撞。   瑞士StepTec智能主轴是智能主轴的范例,它的智能化系统由电感轴向位移传感器、热电偶温度监控、主轴诊断模块、拉杆位置传感系统、加速度计振动测量、前轴承液压预紧载荷系统组成。可通过V3D三维振动测量和SDS主轴诊断软件优化主轴性能;通过AMS轴向位移传感器、TMS温度控制系统、SDM主轴诊断模块进行误差控制。   图1 基于模型的闭环加工系统   德国Prometec公司的主轴传感系统和分析(Spindle Sensor System and Analysis,3SA)环由固定的外环和旋转的内环组成,可安装在任何电主轴的前端,实现主轴智能化。安装在主轴壳体上的固定外环上分布有传感器,与安装在主轴上的旋转内环相互作用,进行主轴工作状态监控。3SA环可记录主轴的载荷状态、监控轴承或主轴的损伤和不平衡度,将信号发送给机床数控系统,补偿主轴的位置误差。3SA环提高了主轴的可用性和性能、以及知识的积累,实现基于主轴工作状态的维护,同时进行刀具和加工过程的监控。3SA环记录主轴工况变化的所有数据,如连接计算机或数控系统人机界面可随时显示,并对最近90次变化进行趋势分析。   智能机床结构   日本Makino T4钛合金加工机床的力控制智能导轨是一种控制导轨表面摩擦力与切削力保持平衡而消除振动的方法,其原理是借助测微计测量移动部件与导轨之间的间隙,控制伺服阀,调整气垫腔的上浮力,从而改变摩擦力,抵消切削力的变化。   增加机床结构的阻尼可减小受激振动的振幅,并使其很快衰减。机床结构阻尼器有两种:调谐阻尼器与主动阻尼器。调谐阻尼器(Turned Damping Device)是在主体结构上附加一定质量比的振动系统,用相位差来抵消振动,同时吸收能量并转化成热能耗散,兼具动力吸振和阻尼性能改善。主动阻尼器(Active Damping Device,ADD)是借助传感器感知机床结构的振动,经放大后转换成电信号,通过动圈式作动器改变机床主体结构的阻尼性能,抑制其振动。主动阻尼器具有频率响应范围宽、惯性质量小、安装方便等优点。   智能数控系统   智能数控系统是新一代的机床“大脑”,具有以下4方面功能:①自主选择加工参数+优化刀具路径=智能编程,进一步从三维CAD模型提取特征语义,直接生成无G指令的数控程序;②数控系统从运动控制器进化为车间管理系统的终端,成为工厂网络的基层节点,并可接入云平台;③数控系统嵌入MTConnect适配器和代理应用程序,能够实现机床之间的通信,进行信息交互;④数控系统连接到数字镜像服务器,与虚拟机床构成数字双胞胎,使产品设计、加工制造和测量检验连接成数字主线,实时看到如何相互影响,以便做出更好的决策,更高效、高质量地运行。   德国SolidCam公司的iMachining是智能编程的例子,它的“工艺向导”汇集了数百位经验丰富的CAM和CNC工程师所掌握的知识和经验,根据机床、材料和刀具优化进给、主轴转速、切削深度和宽度。从第一刀切削开始到加工完毕,iMachining都对毛坯、刀具材料和机床规格进行计算自动生成最佳的切削条件,借助“控制步距”技术,iMachining刀具路径保证切削条件严格遵循工艺向导,而且iMachining可根据主轴的刚性、夹具的刚性和刀具的伸出长度来设置相关的参数。   iMachining能够进行刀具路径优化,采用变体螺旋(Morphing)刀路而不是传统的次摆线(Trochoidal)刀路,减少退刀次数,尽量保证“刀具在切削中”;为了保证材料的最大去除率,iMachining会把刀路自动分成几个小的部分,以保证变体螺旋切削的最大效能;iMachining从最初进刀和最后退刀,动态的毛坯更新及追踪,确保刀路始终在切削材料,消除无用时间和运动;iMachining移动刀具从一个位置运动到下一个切深,仅在绝对需要抬刀的时候才退刀。   日本OKUMA的OSP Suite是智能数控系统的范例,该系统不仅能够实现热亲和、防碰撞、加工导航、伺服导航、5轴机床误差校正这5项智能化技术,同时让生产指示、作业指示,以及机床状态数据的管理可视化,从而缩短加工时间、提高运转率、缩短准备时间。   此外,无G指令的STEP-NC编程能够根据髙层产品数据对加工过程进行优化,提高生产效率与产品质量;可明确地描述需要加工的特征、工艺和允差;面向对象结构化的产品几何与制造信息模型,避免各环节间的数据格式转换;具有通用性和可重用性,STEP-NC文件能不经修改地用于不同的数控机床;实现信息双向传输,下游环节对产品数据的修改可直接保存,并反馈给上游环节。   终端-网络-云平台   在互联网条件下,数控系统不仅能够实现机床与机床的互联,还是一个能够生成车间管理数据、并与有关部门进行数据交换的网络终端。通过制造过程的“数据透明”,实现制造过程和生产管理的无缝连接。这不仅为了方便加工零件,同时产生服务于管理、财务、生产、销售的实时数据。实现了设备、生产计划、设计、制造、供应链、人力、财务、销售、库存等一系列生产和管理环节的资源整合与信息互联,减少浪费,提高效率。   图2 沈阳机床i5智能机床和云协同制造平台   在数控系统提供“透明”数据的前提下,需要与商业模式相配合的云端平台和云端应用。沈阳机床集团旗下智能云科公司研发的云协同制造平台(i-Smart Engineering&Services Online,iSESOL)平台,通过i5智能机床的在线信息,打造了一套云端产能分享平台,用户可以将闲置产能公示于iSESOL产能平台,有产能需求的用户无需购买设备即可快速获得制造能力,通过这种方式产能提供方可以利用闲置产能获得收益,产能需求方可以以较低的成本获得制造能力,双方通过分享获得利益最大化。这种制造能力的分享模式将会改变制造业的组织形式,并且充分挖掘社会闲置制造资源,进行产能切换,从闲置资源中获得利益最大化。基于iSESOL平台的智能机床互联网应用框架如图2所示。   结束语   机床智能化的第一个方面聚焦于机床部件本身,包括主轴单元、进给驱动、结构件的智能化,用以抑制振动和热变形补偿等。第二个方面是从加工设备进化到工厂网络的终端,生产数据能够自动采集,实现机床与机床、机床与各级管理系统的实时通信,使生产透明化,机床融入企业的组织和管理,缔造智能化工厂。机床智能化和网络化为制造资源社会共享、构建异地的、虚拟的云工厂创造了条件,从而迈向共享经济新时代,创造更多的价值。