《染料使石墨烯复合材料更贴近工业》

  • 来源专题:纳米科技
  • 编译者: 郭文姣
  • 发布时间:2014-12-08
  • 在微电子和聚合物行业,生产石墨烯的聚合物复合材料的有效途径是摄取的关键。然而,迄今为止,许多用于生产石墨烯溶液的溶剂是有毒的,难以从最终的聚合物复合物除去,这影响了其最终性能。使用一种已经广泛应用于聚合物的工业染料作为溶剂,除去在最后阶段需要提取的过程。此外,该染料的性质和非毒性是已知的,当染料石墨烯复合材料掺入工业过程时还能进一步降低风险。

相关报告
  • 《吃雾的石墨烯复合材料可减少大气污染》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2019-12-05
    • 石墨烯旗舰公司与博洛尼亚大学,米兰理工大学,CNR,NEST,Italcementi HeidelbergCement Group,以色列理工学院,艾恩德霍芬技术大学和剑桥大学合作开发了石墨烯-二氧化钛光催化剂,其降解率最高可提高70%在实际污染物测试中,大气中的氮氧化物(NOx)比标准的二氧化钛纳米颗粒大。 大气污染是一个日益严重的问题,特别是在城市地区和欠发达国家。根据世界卫生组织的统计,每9例死亡中就有1例归因于空气污染引起的疾病。造成这种情况的主要原因是氮氧化物和挥发性化合物等有机污染物,它们主要是由汽车尾气和工业排放的。 为了解决该问题,研究人员一直在寻找从大气中去除更多污染物的新方法,而二氧化钛等光催化剂是实现这一目标的好方法。当二氧化钛暴露在阳光下时,它会降解氮氧化物(这对人体健康非常有害)和表面上存在的挥发性有机化合物,将它们氧化为惰性或无害的产品。 现在,在意大利海德堡水泥集团的Italcementi的协调下,从事光催化涂层研究的石墨烯旗舰团队开发了一种新型的石墨烯-二氧化钛复合材料,该复合材料的光降解性能比裸氧化钛要强得多。 Italcementi研究协调员Marco Goisis评论说:“我们响应了旗舰的要求,并决定将石墨烯与最常用的光催化剂二氧化钛偶合,以增强光催化作用。”他继续说:“光催化是我们必须破坏环境的最有效方法之一,因为该过程不会消耗光催化剂。这是被太阳光激活的反应。” 通过仅在水和大气压下在二氧化钛纳米粒子存在的情况下进行石墨的液相剥落(生成石墨烯的过程),他们创建了一种新的石墨烯-二氧化钛纳米复合材料,该复合材料可以被动涂覆在材料表面清除空气中的污染物。如果将涂料用于街道或建筑物墙壁上的混凝土,则无害的光降解产品可能会被雨或风洗掉,或手动清除。 为了测量光降解效果,该团队测试了新型光催化剂对NOx的影响,并记录了与标准二氧化钛相比氮氧化物的光催化降解方面的明显改善。他们还使用罗丹明B作为挥发性有机污染物的模型,因为其分子结构与汽车,工业和农业排放的污染物的分子结构极为相似。他们发现,在紫外线照射下,石墨烯-二氧化钛复合物比单独的二氧化钛降解的罗丹明B多40%。 “石墨烯与二氧化钛的偶联以粉末形式为我们提供了优异的结果-可以应用于不同的材料,其中混凝土是广泛使用的一个很好的例子,有助于我们实现更健康的环境。它的维护成本低且环保友好,因为它只需要太阳的能量,不需要其他输入。” Goisis说。但是,要在商业规模上使用它之前,还需要解决一些挑战。需要更便宜的批量生产石墨烯的方法。催化剂和主体材料之间的相互作用需要加深,并需要研究光催化剂在室外环境中的长期稳定性。 超快速瞬态吸收光谱法测量显示了从二氧化钛到石墨烯薄片的电子转移过程,降低了电荷复合速率并提高了反应性物质光产生的效率,这意味着更多的污染物分子可能会降解。 功能性泡沫和涂料的石墨烯旗舰工作包负责人冯新亮解释说:“应用于建筑的胶结基质中的光催化作用可通过减少NOx并实现表面的自我清洁而对减少空气污染产生重大影响。石墨烯可以帮助改善催化剂(如二氧化钛)的光催化性能并增强水泥的机械??性能在该出版物中,石墨烯旗舰合作伙伴通过一步法制备了石墨烯-二氧化钛复合材料在本模型研究中,所制备的复合材料显示出增强的光催化活性,与原始二氧化钛相比,降解的污染物最多比原始二氧化钛多40%,而与之相似的氮氧化物最多可降解70%而且,使用超快速瞬态吸收光谱法简要研究了这种改善的机理。” 作为全球最大的水泥生产商之一的海德堡水泥集团旗下的Italcementi公司全球产品创新总监Enrico Borgarello表示:“将石墨烯整合到二氧化钛中制成新的纳米复合材料是成功的。纳米复合材料显示出光催化性能的显着改善大气中NOx的降解增强了二氧化钛的作用。这是非常重要的结果,我们期待在不久的将来实现光催化纳米复合材料的使用,以改善空气质量。” 将石墨烯掺入混凝土的原因并不仅限于此。 Italcementi还在开发另一种产品-导电石墨烯混凝土复合材料,该产品已于今年2月的世界移动通信大会上展出。当作为地板的一层包括在内时,当电流通过时会释放热量。戈西斯评论道:“您无需使用储水箱或锅炉中的水就可以加热房间或人行道。这为未来的智慧城市-尤其是自感应混凝土-打开了创新之门,”它可以检测压力。混凝土结构中的应力或应变,并监视结构缺陷,如果结构完整性接近失效,则提供警告信号。 石墨烯旗舰产品的科学技术官兼管理小组主席Andrea C. Ferrari补充说:“现在越来越多的公司成为石墨烯旗舰产品的合作伙伴或准成员,因为他们认识到新的和潜在的潜力。在这项工作中,意大利建筑材料领域的负责人Italcementi展示了石墨烯在环境污染物降解中的明确应用,不仅可以带来商业利益,而且最重要的是,通过产生石墨烯可以给社会带来好处。在更清洁,更健康的环境中。” ——文章发布于2019年12月3日
  • 《5G时代 复合材料的发展机遇》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2020-01-14
    • 5G给我们带来的是超越光纤的传输速度(Mobile Beyond Giga),超越工业总线的实时能力(Real-Time World)以及全空间的连接(All-Online Everywhere), 5G将开启充满机会的时代。 从5G的建设需求来看,5G将会采取“宏站+小站”组网覆盖的模式,历次基站的升级,都会带来一轮原有基站改造和新基站建设潮。5G基站的海量增长,将同步带动PCB、天线振子及滤波器等元器件应用的大幅增长。 在5G基站中,印刷电路板(Printed Circuit Board,简称PCB)作为最基础的连接装置将被广泛使用。 PCB产业界广泛应用的基板材料是玻纤布增强的环氧型基材FR-4(环氧树脂玻纤布覆铜板),该材料是由一层或者多层浸渍过环氧树脂的玻璃纤维布构成。 璃纤维布和特殊树脂是PCB重要的原材料之一,玻璃纤维布作为增强材料,起着绝缘和增加强度的作用;特殊树脂作为填充材料,起着粘合和提升板材性能的作用。 为了满足高频高速PCB产品的可靠性、复杂性、电性能和装配性能等诸多方面的要求,许多PCB基板材料的厂商对特殊树脂进行了不同的改进。 在目前高速高频化的趋势下,较为主流的PCB材料包括聚四氟乙烯树脂(PTFE)、环氧树脂(EP)、双马来酰亚胺三嗪树脂(BT)、热固性氰酸脂树脂(CE)、热固性聚苯醚树脂(PPE)和聚酰亚胺树脂(PI),由此衍生出的覆铜板种类超过130种。 对于基站PCB而言,最为重要的指标是介电特性、信号传输速度和耐热性,前两点上PTFE基板都具有较好的性能。 它是目前为止发现的介电性能最好的有机材料,优异的介电性能有利于信号完整快速地传输,这角度而言PTFE是5G时代基站PCB板的优选树脂材料。 塑料天线振子大有可为 天线振子是天线的核心部件。天线振子作为天线的主要组成部分,主要负责将信号放大和控制信号辐射方向,同样可以使天线接收到的电磁信号更强。 5G时代由于频段更高且采用Massive-MIMO技术,天线振子尺寸变小且数量大幅增长,综合考虑天线性能及AAU安装问题,塑料天线振子方案具有一定的综合优势。 为了应对5G新型天线的变化,市场上出现了全新的工艺——3D选择性电镀塑料振子方案。 所谓的塑料天线振子即采用内含有机金属复合物的改性塑料材料,用注塑成型的方式将复杂的3D立体形状一次性制造出来,再利用特殊技术使塑料表面金属化。塑料振子在保证天线满足5G电器性能的同时,产品重量大大减轻,减少了危险过程工序,也节约了成本。 3D塑料振子除了重量非常轻,还能满足钣金和压铸工艺所不能实现的精度要求。注塑和选择性电镀都是精度非常高的工艺,将它们结合在一起,可以保证天线振子精度满足3.5G以上的高频场景要求。 陶瓷介质滤波器优势多 4G时代,通信基站主要采用金属腔体滤波器方案。5G时代,基站通道数扩展 16 倍,器件小型化成为趋势,陶瓷介质滤波器具有轻量化和小型化优势,同时具有可靠的机械结构、无振动结构,便于自动化组装,长期来看,将成为 5G 基站主流部件。 复合材料通讯塔和天线罩 高高耸立的通讯塔大都是钢结构,但腐蚀是个大问题,复合材料可以解决这个问题。复合材料比较轻,使用无扣件连接技术,塔结构的各个独立部件可以快速组装,在装配过程中不需要金属螺栓,安装方便,还减轻了整个塔体的重量。 天线罩要具有良好的电磁波穿透特性,机械性能上要能经受外部恶劣环境的侵蚀如暴风雨、冰雪、沙尘以及太阳辐射等。在材料要求方面,要求在工作频率下的介电常数和损耗角正切要低,及要有足够的机械强度。 一般而言,充气天线罩常用涂有海帕龙橡胶或氯丁橡胶的聚酯纤维薄膜;刚性天线罩用玻璃纤维增强塑料;夹层结构中的夹心多用蜂窝状芯子或泡沫塑料。 而在5G趋势下,性能优越的复合材料成为备受欢迎的天线外罩材料。复合材料能起到绝缘防腐、防雷、抗干扰、经久耐用等作用,而且透波效果非常好。 手机后盖:首选PC/PMMA塑料复合材料 5G 时代,针对手机结构、形态新的要求,例如小型化、超薄化、全面屏等,都需要新的工艺和材料支撑。无线充电、NFC 等功能需求加快手机后盖去金属化推进,带动 PC/PMMA 共挤复合板材市场规模大幅上升。 5G时代,对 5G应用设备材料提出了更严苛的要求。由于5G走的是对金属敏感的毫米波,使用金属外壳将会屏蔽信号。塑料复合材料凭着优越的性能,成为手机后盖的潮流选择。 当中,最热门的要数PC/PMMA复合板材。这种材料是将PMMA和PC通过共挤(非合金材料)制得,包括PMMA层和PC层。 MMA层加硬后能达到4H以上的铅笔硬度,保证了产品的耐刮擦性能,而PC层能确保其具有足够的韧性,保证了整体的冲击强度。 石墨烯:理想的5G设备导热散热材料 高频率、硬件零部件的升级以及联网设备及天线数量的成倍增长,设备与设备之间及设备本身内部的电磁干扰无处不在,电磁干扰和电磁辐射对电子设备的危害也日益严重。 与此同时,伴随着电子产品的更新升级,设备的功耗不断增大,发热量也随之快速上升。 未来高频率高功率电子产品要着力解决其产生的电磁辐射和热。 为此,电子产品在设计时将会加入越来越多的电磁屏蔽及导热器件。因此电磁屏蔽和散热材料及器件的作用将愈发重要,未来需求也将持续增长。 以导热石墨烯为例,5G手机有望在更多关键零部件部位采用定制化导热石墨烯方案,同时复合型和多层高导热膜由于具备更优的散热效果而将会被更多采用。 5G复合材料相关新闻 科思创研发5G基站外壳材料 2019年年中,科思创亚太区创新副总裁施马可表示,公司已成功研发了适用于5G基站的外壳材料。 施马可表示,5G技术拥有频率高、波长短的特点,导致其信号衰减程度较大,这意味着需要借助于大量5G微型基站的部署不断放大信号,确保信号覆盖。相比于4G时代,5G的微型基站数量预计将增加约20倍左右。 而在开发5G基站的过程中,必须确保5G的高频信号能够顺利穿透外壳,这对材料提出了较高要求。在一年多前,科思创位于上海的聚合物研发中心启动了这项针对5G基站外壳材料的实验。 巴斯夫创新聚氨酯解决方案为中国5G通信塔提供稳固支持 巴斯夫Elastolit?聚氨酯(PU)创新材料解决方案为中国部署5G网络提供助力。安徽汇科恒远复合材料有限公司(汇科)采用Elastolit制成60座通信塔,分布在北京、苏州以及黑龙江和江西的多个城市。 相比传统混凝土或钢基材料,采用Elastolit?制成的通讯塔质量更轻,即便在偏远地区亦可快速安装,同时能够抵御大雪和强风等恶劣天气。 巴斯夫亚太区特性材料部全球高级副总裁鲍磊伟(Andy Postlethwaite)表示:“5G基站承载传输设备和天线,必须在恶劣天气条件下保持强韧。采用巴斯夫PU复合材料制成的35米高通信塔重约1,500至1,800千克,其断裂强度是自身重量的十倍。” 不仅如此,Elastolit?制成的通讯塔较传统钢塔更具成本效益。Elastolit?具有耐锈和耐腐蚀特性,所需维护量更小。表面覆盖有一层特殊配方的耐紫外线涂层,能够延长其使用寿命。同时具有防火性,能够迅速自熄。 俄罗斯物理学家开展用于5G设备的复合材料性能研究 俄罗斯托木斯克州立大学(TSU)的放射物理学家正在建立一个复合材料性能数据库,该数据库可辅助创建在太赫兹范围内运行的5G及空间通信设备。科学家们正在用丙烯腈-丁二烯-苯乙烯(ABS)工程塑料和碳纳米管研制复合材料,并在10兆赫至1太赫兹的频率范围内测量其性能。 为了开发这种原始材料,放射物理学家正在使用聚合物,并在化学工艺的辅助下,用碳纳米管进行填充。这些材料目前正由俄罗斯科学院西伯利亚分院的波列斯科夫催化研究所为放射物理学院的太赫兹实验室生产。 “通过添加不同含量的碳纳米管,我们改变了材料的介电性能。例如,我们可以增加介电常数。”放射物理学院副教授、项目经理Alexander Badyin解释说,“然后,我们使用3D打印技术,可以获得带有元件(导体、电阻等)的印刷电路板。我们通过控制装置的参数来打印对照样品(板或环),并检测复合材料在太赫兹范围内的工作性能。” 研究人员表示,此前的科研工作主要聚焦在4-5千兆赫兹的家用辐射频段中。而TSU科学家团队的工作范围更广——最高可达1太赫兹。研究人员表示,目前这项研究还不够充分。截至2019年12月,研究人员已经研究了近50个样品的特性。 日本信越化工推出“石英布”等适应5G时代需求的产品 日本信越化学工业根据5G时代的需求,推出了“石英玻璃纤维布”、“热固性低介电树脂”,可以用于5G高频带的电子器件和电路基板、天线、雷达罩等。此外,信越化学工业还增加了散热片的品种。 石英玻璃纤维布的介电常数低于3.7,消耗因数低于0.001,线膨胀系数低于1ppm/℃,传输损耗(电信号的劣化程度)的特性极为优异。该产品最适合作为5G超高速布线基板的核心材料,天线、雷达罩的纤维增强树脂零件等。 热固性低介电树脂是一种接近氟树脂、拥有低介电常数和高强度的低弹性树脂。它的高频带(10~80GHz)介电常数低于2.5,消耗因数低于0.00025。这是热固性树脂的最低水平。由于产品的低吸湿性、对低粗度的铜箔也具有很高的粘着力,因此也可用于FCCL(软性铜箔基材)。