《美国Mattiq公司开发出耐用的氧化铱催化剂替代品》

  • 来源专题:先进材料
  • 编译者: 李丹
  • 发布时间:2023-10-15
  • 据mining.com网10月6日消息,美国清洁化学初创企业Mattiq公司开发出一系列耐用的氧化铱催化剂替代品。氧化铱催化剂是质子交换膜(PEM)水电解槽的关键组件,但铱是一种稀有且昂贵的元素,供应有限且成本高昂,无法满足未来生产清洁氢的需求。Mattiq公司利用人工智能技术对铱替代品进行了全面研究,使每种低成本替代品都有可能达到或超过氧化铱催化剂的性能,以实现具有成本效益的PEM水电解,并提高供应链的韧性。研究人员利用一项核心技术,在芯片上合成数百万个单独的无机纳米颗粒,并控制颗粒的成分、尺寸和形状,从而将不同的元素结合起来,从中筛选出可行的替代品组合。该公司的目标是在2024年第一季度将筛选出的材料组合推向市场。


    来自全球技术地图

  • 原文来源:https://www.mining.com/us-chemicals-company-develops-portfolio-of-catalysts-to-solve-materials-challenge-in-hydrogen/
相关报告
  • 《【Frontiers in Energy 】为直接氨固体氧化物燃料电池开发高效阳极催化剂》

    • 来源专题:新能源汽车
    • 编译者:王晓丽
    • 发布时间:2024-06-11
    • 由于氨的氢含量高、能量密度大且易于液化,人们开始探索将氨作为氢载体。固体氧化物燃料电池(SOFC)是一种高效的电化学装置,可以利用氢气和碳氢化合物等燃料。然而,由于氢的体积密度和沸点较低,氢的储存和运输面临着巨大的挑战。氨基 SOFC 是一种前景广阔的替代技术,而优化其在中温条件下的性能则是人们关注的一个关键领域。 福州大学钟富兰和罗宇领导的研究小组重点开发了作为 NH3-SOFC 负极催化剂的热长石 La2Zr2-xNixO7+δ (LZNx) 氧化物。研究小组研究了掺杂 Ni2+ 对这些氧化物的晶体结构、表面形貌、与钇稳定氧化锆(YSZ)的热匹配、电导率和电化学性能的影响。该研究发表在 Frontiers in Energy 杂志上。 研究发现,LZNx 氧化物具有 n 型半导体特性,与 YSZ 电解质具有良好的高温化学相容性和热匹配性。此外,LZN0.05 表现出最小的导电带电位和带隙,因此作为 NH3-SOFC 的阳极材料具有更高的功率密度。 LZN0.05-40YSZ 复合阳极在 800 °C 时的最大功率密度为 100.86 mW/cm2,是相同条件下基于 NiO 的 NH3-SOFC 的 1.8 倍。此外,LZN0.05-40YSZ 复合阳极在 800 °C 下连续工作 100 小时后,电压衰减几乎可以忽略不计,这表明它具有更长的耐用性。 LZNx 阳极的开发满足了 NH3-SOFCs 对高效阳极催化剂的迫切需求,在通过氨利用支持氢经济方面迈出了重要一步。 电导率和电化学性能的提高以及经证明的耐用性表明,这些材料在未来的清洁能源生产中将发挥关键作用。 原文链接:: Shiqing Yang et al, Pyrochlore La2Zr2–xNixO7 anodes for direct ammonia solid oxide fuel cells, Frontiers in Energy (2024). DOI: 10.1007/s11708-024-0948-2
  • 《科学家开发新型燃料电池催化剂》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2018-10-29
    • 阻碍环保氢燃料电池广泛应用于汽车、卡车和其他车辆的一个因素是铂催化剂的成本。 使用不太贵重的铂的一种方法是将其与其他较便宜的金属结合使用,但这些合金催化剂在燃料电池条件下往往会迅速降解。 现在,布朗大学的研究人员已经开发出一种新型合金催化剂,既能减少铂的使用,又能在燃料电池测试中保持良好的性能。 据《焦耳》杂志报道,这种催化剂由铂合金和纳米颗粒中的钴制成,在反应性和耐久性方面都超过了美国能源部(DOE) 2020年的目标。 “合金催化剂的耐久性是该领域的一个大问题,”布朗大学化学研究生Junrui Li说。 “研究表明,合金最初的性能比纯铂要好,但在燃料电池中,催化剂的非贵金属部分会很快被氧化和过滤掉。” 为了解决这个浸出问题,Li和他的同事开发了一种特殊结构的合金纳米颗粒。 这些粒子有一个纯铂外壳,围绕着一个由铂和钴原子交替层构成的核心。 布朗大学(Brown)化学教授、该研究的资深作者Shouheng Sun表示,这种分层的核心结构是催化剂反应性和耐久性的关键。 “内核中原子的分层排列有助于平滑和收紧外壳中的铂晶格,”Sun说。 “这增加了铂的反应性,同时也防止了钴原子在反应过程中被吃掉。这就是为什么在金属原子随机排列的情况下,这些粒子比合金粒子表现得更好。” 关于有序结构如何增强催化剂活性的细节在焦耳论文中有简要描述,但更具体地说,在发表在《化学物理杂志》上的另一篇计算机建模论文中。 这项建模工作由安德鲁·彼得森(Andrew Peterson)领导,他是布朗工程学院的副教授,也是焦耳论文的合著者。 为了进行实验工作,研究人员测试了催化剂的能力来执行氧还原反应,这对燃料电池性能和耐久性是至关重要的。 在质子交换膜(PEM)燃料电池的一侧, 从氢燃料中剥离出来的电子会产生驱动电动机的电流。在电池的另一端,氧原子吸收这些电子来完成一个循环。 这是通过氧还原反应完成的。 初步测试表明,该催化剂在实验室环境下表现良好,优于更传统的铂合金催化剂。 新催化剂在3万次电压循环后仍然保持活性,而传统催化剂的性能明显下降。 但是,尽管实验室测试对于评估催化剂的性能很重要,研究人员说,它们并不一定能显示催化剂在实际燃料电池中的性能。 与实验室测试环境相比,燃料电池环境温度更高,酸度也不同,这将加速催化剂的降解。 为了弄清楚这种催化剂在这种环境下能维持多久,研究人员将这种催化剂送到洛斯阿拉莫斯国家实验室,在一个实际的燃料电池中进行测试。 测试表明,该催化剂在初始活性和长期耐久性方面都优于美国能源部(DOE)设定的目标。 美国能源部要求研究人员开发催化剂,到2020年,其初始活性为每毫克铂0.44安培,在3万次电压循环(大致相当于燃料电池汽车使用5年)后,其活性至少为每毫克铂0.26安培。 对新催化剂的测试表明,它的初始活性为每毫克0.56安培,在3万次循环后的活性为每毫克0.45安培。 “即使经过了30000个循环,我们的催化剂仍然超出了能源部最初的活性目标,”Sun说。 “在真实的燃料电池环境中,这种性能真的很有前途。” 研究人员已经申请了催化剂的临时专利,他们希望继续开发和完善它。