《第四代半导体氧化镓蓄势待发!》

  • 来源专题:光电情报网信息监测服务平台
  • 编译者: 胡思思
  • 发布时间:2024-08-28
  • 新能源汽车大势之下,以碳化硅为代表的第三代半导体发展风生水起。与此同时,第四代半导体也在蓄势待发,其中,

    氧化镓(Ga2O3)基于其性能与成本优势,有望成为继碳化硅之后最具潜力的半导体材料。

    近期媒体报道,鸿海研究院半导体所与阳明交大电子所合作,双方研究团队在第四代半导体的关键技术上取得重大突破,提高了氧化镓在高压、高温应用领域的高压耐受性能。

    本次研究利用磷离子布植和快速热退火技术实现了第四代半导体P型氧化镓的制造,并在其上重新生长N型和 N+型Ga2O3,形成了PN Ga2O3 二极体,结果展示出优异的电性表现,这一突破性技术除了能大幅提升元件的稳定性和可靠性,并显著降低电阻。

    论文详细阐述了这种新型Ga2O3 PN二极体的制作过程和性能特征。实验结果显示,该元件具有4.2 V的开启电压和900 V的击穿电压,展现出元件优异的高压耐受性能。

    资料显示,氧化镓作为第四代半导体材料代表,具备禁带宽度大、临界击穿场强高、导通特性好(几乎是碳化硅的10倍)、材料生长成本低等优势,这些特性使得氧化镓特别适用于电动汽车、电网系统、航空航天等高功率应用场景。

    鸿海认为,氧化镓将有望成为具有竞争力的电力电子元件,能直接与碳化硅竞争。展望未来,鸿海研究院表示,随着氧化镓技术的进一步发展,可以期待其在更多高压、高温和高频领域中有更广泛应用。氧化镓技术不断突破资料显示,当前日本、美国与中国对氧化镓领域的研究较为积极。

    日本相关厂商已经实现了4英寸与6英寸氧化镓的产业化发展,2023年底,日本NCT(novel crystal technology)公司宣布全球首次采用垂直布里奇曼(VB)法成功制备出6英寸β型氧化镓单晶。

    美国Kyma科技公司在氧化镓基片、外延晶片和器件的生产上具有优势,并且与美国国防部达成紧密的合作关系。

    我国同样也在加速布局氧化镓,并取得了一系列重要研究成果。

    去年2月,中国电科46所成功制备出6英寸氧化镓单晶,技术达到了国际一线水平。

    去年10月,北京铭镓半导体有限公司实现了4英寸氧化镓晶圆衬底技术突破,推出多规格氧化镓单晶衬底并首发4英寸(100)面单晶衬底参数。

    今年3月,镓仁半导体联合浙江大学杭州国际科创中心先进半导体研究院、硅及先进半导体材料全国重点实验室,采用自主开创的铸造法于今年2月成功制备了高质量6英寸非故意掺杂及导电型氧化镓(β-Ga2O3)单晶,并加工获得了6英寸氧化镓衬底片。同年7月,镓仁半导体制备出了3英寸晶圆级(010)氧化镓单晶衬底。

    今年4月,媒体报道厦门大学电子科学与技术学院杨伟锋教授团队在第四代半导体氧化镓(β-Ga2O3)外延生长技术和日盲光电探测器制备方面取得重要进展。

    在β-Ga2O3薄膜生长方面,研究团队利用分子束外延技术(MBE)实现了高质量、低缺陷密度的外延薄膜生长,并通过改变反应物前驱体和精密控制生长参数,成功实现了β-Ga2O3外延薄膜的均匀生长和优良的晶体质量,有力地推动了β-Ga2O3薄膜的高质量异质外延的发展。同时,研究团队还通过对MBE外延生长过程中的β-Ga2O3薄膜生长机制进行详细探究,揭示了其成核、生长的差异性,并建立了相对应的外延生长机理模型图。据悉,β-Ga2O3材料因其本征日盲光吸收(254 nm),简单二元组成,带隙可调,制备工艺简单等优势在日盲光电探测器领域受到广泛关注。

    另外,该研究团队在MBE异质外延β-Ga2O3生长机制的基础上,结合半导体光电响应原理,探究了异质外延β-Ga2O3薄膜日盲光电探测器的性能指标。研究团队利用臭氧作为前驱体所制备的金属-半导体-金属结构日盲光电探测器表现出7.5 pA的暗电流、1.31×107的光暗电流比、1.31×1015 Jones的比检测率和 53 A/W的光响应度,表现出相当优异的对日盲紫外光的探测性能。

  • 原文来源:https://www.eepw.com.cn/article/202408/462349.htm
相关报告
  • 《前沿 | 第四代半导体新进展:4英寸氧化镓单晶导电型掺杂》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:胡思思
    • 发布时间:2025-02-17
    • 最近氧化镓领域又有了新的进展。今年1月,镓仁半导体宣布基于自主研发的氧化镓专用晶体生长设备进行工艺优化,采用垂直布里奇曼(VB)法成功实现4英寸氧化镓单晶的导电型掺杂。本次生长4英寸导电型氧化镓单晶仍沿用了细籽晶诱导+锥面放肩技术,籽晶与晶体轴向平行于[010]晶向,可加工4英寸(010)面衬底,适合SBD等高功率器件应用。 在以碳化硅和氮化镓为主的第三代半导体之后,氧化镓被视为是下一代半导体的最佳材料之一。氧化镓具有多种同分异构体,其中β-Ga2O3(β相氧化镓)最为稳定,也是目前在半导体应用中被研究最多,距离商业化应用最近的一种。 氧化镓本身的材料特性极为优异。我们都知道第三代半导体也被称为宽禁带半导体,而第四代半导体的一个重要特性就是“超宽禁带”,禁带宽度在4eV以上(金刚石5.5eV,β-Ga2O3禁带宽度4.2-4.9eV),相比之下,第三代半导体中碳化硅禁带宽度仅为3.2eV,氮化镓也只有3.4eV。 更宽的禁带,带来的优势是击穿电场强度更大,反映到器件上就是耐压值更高,同样以主流的β结构Ga2O3材料为例,其击穿电场强度约为8MV/cm,是硅的20倍以上,相比碳化硅和氮化镓也高出一倍以上。 在应用层面上,氧化镓主要被应用于光电以及高功率器件的领域。 2022年美国商务部工业和安全局的文件中披露,美国将对氧化镓和金刚石两种超宽禁带半导体衬底实施出口管制,也足以证明第四代半导体的重要性。 作为超宽禁带半导体(禁带宽度约4.8-4.9 eV),氧化镓其高击穿场强和热稳定性适合高压、高温应用,但本征缺陷常使其呈弱n型导电。通过掺入杂质改变半导体的导电类型(n型或p型)及载流子浓度。n型掺杂引入自由电子,p型掺杂引入空穴。 所以氧化镓单晶的导电型掺杂是解锁其在功率电子、深紫外光电器件等领域潜力的核心步骤。 与此同时,镓仁半导体在这次实现4英寸氧化镓单晶的导电型掺杂中采用了VB法,并使用自研的VB法长晶设备。去年9月,镓仁半导体推出了首台自研氧化镓专用晶体生长设备,不仅能够满足氧化镓生长对高温和高氧环境的需求,而且能够进行全自动化晶体生长,减少了人工干预,显著提高了生产效率和晶体质量。 据介绍,目前镓仁半导体VB法氧化镓长晶设备及工艺包已全面开放销售。 最近,国内氧化镓产业在大尺寸单晶衬底制备方面有不少新进展,杭州富加镓业通过自主研发的垂直布里奇曼(VB)法,成功实现4英寸导电型掺杂氧化镓单晶的稳定生长,并进一步开发了6英寸单晶衬底,厚度达12mm,可切割更多晶片,显著降低成本;铭镓半导体也宣布全球首创4英寸氧化镓晶坯技术,推动材料规模化生产。 氧化镓凭借其超宽禁带、低成本和耐高压特性,正从实验室迈向产业化。尽管面临热管理、产业链整合等挑战,随着技术突破和政策支持,其有望在功率电子和光电领域掀起新一轮半导体革命。
  • 《ROHM推出第四代SiC MOSFET》

    • 来源专题:集成电路
    • 编译者:Lightfeng
    • 发布时间:2020-06-21
    • 功率半导体制造商ROHM Semiconductor日前宣布退出其1200V第四代碳化硅金属氧化物半导体场效应晶体管(SiC MOSFET),适用于包括主机逆变器在内的车载动力总成系统和工业设备的电源。 近年来,新一代电动汽车(xEV)的普及加速了更小、更轻、更高效的电气系统的开发。特别是在提高效率同时减小主逆变器的尺寸,仍然是最重要的挑战,需要功率器件的进一步发展。 为了解决充电时间和续航问题,设计人员迫切需要能够提供高击穿电压且损耗低的SiC功率器件。ROHM于2010年在全球率先开始了SiC MOSFET的量产,并且很早就开始加强符合汽车电子产品可靠性标准AEC-Q101的产品阵容,并在车载充电器等领域拥有很高的市场份额。 对于功率半导体,总在低导通电阻和短路耐受时间之间权衡取舍。因此在降低SiC MOSFET的导通电阻时,如何兼顾短路耐受时间一直是一个挑战。研究人员已证明在SiC MOSFET中采用沟槽结构可以有效降低导通电阻,但有必要减轻沟槽栅极部分产生的电场,以确保器件的长期可靠性。ROHM采用了独特的双沟槽结构,可最大程度地减小电场集中,与上一代SiC MOSFET相比,在不牺牲短路耐受时间的前提下成功地将单位面积的导通电阻降低了约40%。而且,通过大幅减少寄生电容,与以往产品相比,成功地将开关损耗降低了约50%。 因此,ROHM的新型第四代SiC MOSFET能够提供低导通电阻和高速开关性能,从而助于显著缩小车载逆变器和各种开关电源等众多应用的体积并进一步降低其功耗。裸芯片样品已于6月提供,未来将提供分立封装。