《泰雷兹回旋加速器创下等离子体加热新纪》

  • 来源专题:能源情报网监测服务平台
  • 编译者: 郭楷模
  • 发布时间:2024-10-31
  • 泰雷兹公司回旋加速器助力Wendelstein 7-X仿星器创等离子体加热新纪录

    近日,泰雷兹公司的TH1507U回旋加速器在Wendelstein 7-X仿星器项目中取得了重要里程碑。该回旋加速器是为Wendelstein 7-X仿星器专门开发的,由泰雷兹公司与马克斯普朗克等离子体物理研究所合作完成。在360秒内,它以140千兆赫的频率实现了1.3兆瓦的射频总输出,创下了等离子体加热的新纪录。

    回旋管是一种高功率线性束真空管,通过强磁场中电子的回旋共振产生毫米波电磁波。在Wendelstein 7-X项目中,泰雷兹公司的回旋加速器为等离子体提供加热和稳定,这对于达到磁约束核聚变所需的温度至关重要。

    Wendelstein 7-X项目是世界上最大、最强大的仿星器之一,旨在增进对等离子体的根本了解,并为商用聚变反应堆的发展做出贡献。泰雷兹公司作为欧洲唯一一家回旋管电子管制造商,其TH1507U回旋管是在欧洲回旋管联盟的合作下开发的,旨在打造一个自主的欧洲高可靠性回旋管来源。

    泰雷兹微波与成像子系统副总裁Charles-Antoine Goffin表示:“我们的回旋加速器创下的世界纪录是核聚变竞赛中的一个重要里程碑,展示了我们对技术创新和卓越的承诺。这项技术突破使泰雷兹处于高功率等离子加热解决方案的前沿,对于应对未来的能源挑战至关重要。”

    2023年2月,Wendelstein 7-X仿星器产生了创纪录的等离子体,持续8分钟,能量输出为1.3千兆焦耳。之后,仿星器按计划关闭进行维护和改进,包括安装新的回旋加速器。9月,Wendelstein 7-X开始了新的实验活动,继续探索核聚变能源的未来。

  • 原文来源:https://www.nengyuanjie.net/article/101497.html
相关报告
  • 《测量等离子体波》

    • 来源专题:重大科技基础设施领域知识集成服务平台
    • 编译者:魏韧
    • 发布时间:2021-03-19
    • 基于等离子体的加速技术有望实现新一代功能强大且紧凑的粒子加速器。但是,要应用这项新技术,还必须克服各种困难。特别是要实现对加速过程本身的精确控制。德国电子同步加速器研究所(DESY)的研究人员利用创新技术,以前所未有的精度成功测量了加速中的等离子体尾波。他们的方法能以飞秒级(十亿分之一秒的百万分之一秒)的分辨率来确定有效加速场的形状,从而可以详细研究加速过程,并为控制和优化未来的等离子体加速器打下基础。 等离子体是一种被剥离了电子的分子气体。高能激光或粒子束可以迫使这些自由移动的等离子电子振荡,从而产生强电场,加速带电粒子。为了实现这一目标,DESY的FLASH Forward设备将电子束以接近光速发射到等离子体中。研究人员解释说:“在电子束的后面形成等离子体电子尾流,另一个电子束就可以在此尾流中冲浪,并在此过程中被加速:就像滑水者在小船的尾流中滑行一样。这就是该技术也被称为等离子尾波加速的原因。” 等离子体尾流产生的加速度可能比目前使用的最强大的传统设备的加速度大一千倍。科研人员解释说:“要实现最高加速度,电子束和尾流必须精确地彼此协调。要做到这一点,必须能够精确地测量尾流的形状,但由于其只有千分之几毫米长,因此极具挑战性。” 该研究小组开发了一种方法,利用加速的电子本身来揭示等离子体尾流加速场的形状。为了实现这一点,首先使电子束通过曲柄式磁压缩系统旋转。然后横插入一块金属片,部分电子就会从电子束上脱离。最后,电子束再次旋转回原位。由于部分电子缺失,输出电子束的最终能谱发生了改变,从而可以推断出移除部分电子束位置的加速场强度。如果将电子束切得足够薄,则可以用飞秒的瞬时分辨率确定等离子体尾流中有效加速场的轮廓。在实验中,该团队能够实现15飞秒的分辨率——相当于尾流中大约千分之五毫米的空间分辨率。研究人员认为,甚至可获得更高的分辨率。 利用这项技术,可以详细研究各个实验组件与加速过程之间的相互作用,并有助于详细了解和优化等离子体尾波。
  • 《法核聚变装置等离子体运行时间创纪录》

    • 来源专题:能源情报网监测服务平台
    • 编译者:郭楷模
    • 发布时间:2025-02-26
    • 法国原子能和替代能源委员会(CEA)官网18日宣布,本月12日,由其运营的托卡马克核聚变装置——钨环境下的稳态托卡马克装置(WEST)让氢等离子体状态持续了1337秒(22分钟17秒)。这一时长刷新了中国全超导托卡马克核聚变实验装置(EAST)此前数周创下的1066秒时间纪录。 CEA基础研究部主任安妮·伊莎贝拉·艾蒂安芙瑞透露,WEST装置此次运行中的加热功率高达2兆瓦,氢等离子体的温度更是攀升至5000万摄氏度。CEA研究团队计划在接下来的几个月里,继续提高等离子体的温度,并进一步延长其持续时间,目标是达到数小时。 CEA官网称,这一进展表明,科学家对等离子体的了解与日俱增,长时间控制等离子体的技术也日益成熟,为聚变等离子体在国际热核聚变实验反应堆(ITER)等设施内更长时间稳定运行奠定了坚实基础。 ITER反应堆正在法国南部紧锣密鼓地建造中,包括中国、美国、英国、日本、韩国和俄罗斯在内的数十个国家参与了该计划。据悉,ITER最早将于2039年实现点火。 像WEST和EAST这样的托卡马克实验装置是最常见的核聚变反应堆。在这些装置中,等离子体被加热到极高温度,并被强磁场约束在一个形似甜甜圈的反应堆腔体内。 核聚变反应堆被誉为“人造太阳”,因为它们产生能量的方式与太阳如出一辙:通过热量和压力使两个较轻原子融合为一个较重原子。由于太阳内部的压力远超地球上反应堆内的压力,因此科学家通过创造比太阳高很多的温度来弥补这一差距。 CEA团队表示,尽管科学家在核聚变领域不断取得进展,但要让核聚变技术在净零排放领域“大显身手”,仍需克服一些技术难题。此外,科学家还需要证明核聚变技术的经济可行性,以确保其能真正走向实用化。