《泰雷兹回旋加速器创下等离子体加热新纪》

  • 来源专题:能源情报网监测服务平台
  • 编译者: 郭楷模
  • 发布时间:2024-10-31
  • 泰雷兹公司回旋加速器助力Wendelstein 7-X仿星器创等离子体加热新纪录

    近日,泰雷兹公司的TH1507U回旋加速器在Wendelstein 7-X仿星器项目中取得了重要里程碑。该回旋加速器是为Wendelstein 7-X仿星器专门开发的,由泰雷兹公司与马克斯普朗克等离子体物理研究所合作完成。在360秒内,它以140千兆赫的频率实现了1.3兆瓦的射频总输出,创下了等离子体加热的新纪录。

    回旋管是一种高功率线性束真空管,通过强磁场中电子的回旋共振产生毫米波电磁波。在Wendelstein 7-X项目中,泰雷兹公司的回旋加速器为等离子体提供加热和稳定,这对于达到磁约束核聚变所需的温度至关重要。

    Wendelstein 7-X项目是世界上最大、最强大的仿星器之一,旨在增进对等离子体的根本了解,并为商用聚变反应堆的发展做出贡献。泰雷兹公司作为欧洲唯一一家回旋管电子管制造商,其TH1507U回旋管是在欧洲回旋管联盟的合作下开发的,旨在打造一个自主的欧洲高可靠性回旋管来源。

    泰雷兹微波与成像子系统副总裁Charles-Antoine Goffin表示:“我们的回旋加速器创下的世界纪录是核聚变竞赛中的一个重要里程碑,展示了我们对技术创新和卓越的承诺。这项技术突破使泰雷兹处于高功率等离子加热解决方案的前沿,对于应对未来的能源挑战至关重要。”

    2023年2月,Wendelstein 7-X仿星器产生了创纪录的等离子体,持续8分钟,能量输出为1.3千兆焦耳。之后,仿星器按计划关闭进行维护和改进,包括安装新的回旋加速器。9月,Wendelstein 7-X开始了新的实验活动,继续探索核聚变能源的未来。

  • 原文来源:https://www.nengyuanjie.net/article/101497.html
相关报告
  • 《探索 | 小型化等离子体加速器可产生高能电子束》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2023-03-13
    • 近日,英国科研团队表明,等粒子体加速器可以产生更多、频率更高的电子束,远远超过当今世界上少数运行的大型自由电子激光器(FELs)。该团队对一个由等离子体尾波场装置驱动的自由电子激光(FEL)进行了端到端的模拟,将加速电子从等离子体中提取出来。它们指出,该装置可以产生相干的硬X射线脉冲,每个脉冲只有100 as。 图1 等离子体尾波场装置加速电子并转化为X射线的艺术效果图 更小、更便宜的加速器 FELs通过一种称为波动器的装置发射高能电子,从而产生大量受欢迎的高频光。这种交错级数的磁铁迫使电子振荡并发射光子,这反过来导致电子在发射波长范围内聚集起来。随着辐射功率沿着波荡器呈指数级增长,结果就是一系列异常明亮的相干态闪光。 这个过程依赖于这种高能电子,其能量、空间位置和动量范围也非常狭窄。现有FEL通过加速射频腔实现高能电子。然而,这种腔体能承受的电场强度非常有限,限制了最大速度,这意味着需要加长加速器,提高装置成本(最新加速器造价超过10亿美元)。 由于等离子加速器具有高得多的电厂梯度,因此它可实现小型化、低成本。当高能粒子或激光脉冲穿过等离子体,将等离子体电子推到一边,并很快在它们尾迹中留下一个带正电区域,形成电子梯度。然后,电子在这个区域聚集,负电荷多于正电荷,这个区域带负电,其它电子与其相互作用,从而沿着这个波加速。 科学家们已经通过这种方式使电子束达到了每米几十亿伏特,然而,由于他们无法同时将能量传播和发射动量(能量和横向动量分布)限制在实验水平,因此仍无法达到传统加速器所能达到的光束质量。其结果是等离子体驱动的 FEL 能够产生高达软 X 射线波长的非相干辐射,或者在极紫外辐射区域产生相干输出。 更亮的电子束 2019年,英国斯特拉斯克莱德大学、美国 SLAC 国家加速器实验室合作团队展示了如何通过改变电子加速方式来提高光束质量。他们的“Trojan horse”技术包括利用等离子体波中释放的“冷”电子,通过激光脉冲电离背景气体,而不是从等离子体外注入“热”电子。在 SLAC 的 FACET 设施工作时,他们使用不同的激光脉冲电离氢原子,产生等离子体和氦原子,从而产生冷电子。 现在,斯特拉斯克莱德大学的Bernhard Hidding和Fahim Habib领导的这项合作的一部分,已经继续研究这种腔产生的电子特性是否可以在利用其稳定地产生 x 射线并且不会快速衰减。该团队的计算机模拟包括产生一个额外的电子束来重叠主电子束,并在放弃前者之前将其能量传播最小化,然后引导后者通过波荡器。 基于此,Hidding团队发现,应该有可能产生比射频装置中最亮的数量级更亮的电子束,然后提取、分离和传输这些电子束,而不会造成能量传播或发射率的显著降低。他们推断,波动器的输出将是波长小于盎司的相干 X 射线脉冲,持续时间约为100阿秒(≈10-16秒) ,在电子振荡10米后达到最大亮度。 未来方向 该团队认为,这种短波长脉冲可以在基础科学、医学和工业领域得到广泛的应用。此外,他们称,未来有可能实现电子在其自然时间和长度尺度上的运动成像,从而可以研究生物分子和化学反应中的超快电荷转移。 至于这种自由电子激光器的体积,Hidding团队表示,如果用来产生尾波场的电子来自一个等离子体装置,那么它的大小可能只有几十米。等离子体装置是用激光而不是粒子加速器来产生尾波场的。与射频线性粒子加速器相比,这种激光尾波场加速器产生的电子束具有更高的能量分布和发射率,然而,这些电子束虽然不适合硬 X 射线的产生,但足以应用于另一种等离子体设备。 实际上,他们认为这样的串联等离子体加速器可能使硬 X 射线 FELs“无处不在地被用作探测等离子体、核或高能物理的诊断手段”——可能被放置在中等规模的大学实验室和教研医院中。但是他们描述,这项技术的实际应用还需要若干年研究。
  • 《测量等离子体波》

    • 来源专题:重大科技基础设施领域知识集成服务平台
    • 编译者:魏韧
    • 发布时间:2021-03-19
    • 基于等离子体的加速技术有望实现新一代功能强大且紧凑的粒子加速器。但是,要应用这项新技术,还必须克服各种困难。特别是要实现对加速过程本身的精确控制。德国电子同步加速器研究所(DESY)的研究人员利用创新技术,以前所未有的精度成功测量了加速中的等离子体尾波。他们的方法能以飞秒级(十亿分之一秒的百万分之一秒)的分辨率来确定有效加速场的形状,从而可以详细研究加速过程,并为控制和优化未来的等离子体加速器打下基础。 等离子体是一种被剥离了电子的分子气体。高能激光或粒子束可以迫使这些自由移动的等离子电子振荡,从而产生强电场,加速带电粒子。为了实现这一目标,DESY的FLASH Forward设备将电子束以接近光速发射到等离子体中。研究人员解释说:“在电子束的后面形成等离子体电子尾流,另一个电子束就可以在此尾流中冲浪,并在此过程中被加速:就像滑水者在小船的尾流中滑行一样。这就是该技术也被称为等离子尾波加速的原因。” 等离子体尾流产生的加速度可能比目前使用的最强大的传统设备的加速度大一千倍。科研人员解释说:“要实现最高加速度,电子束和尾流必须精确地彼此协调。要做到这一点,必须能够精确地测量尾流的形状,但由于其只有千分之几毫米长,因此极具挑战性。” 该研究小组开发了一种方法,利用加速的电子本身来揭示等离子体尾流加速场的形状。为了实现这一点,首先使电子束通过曲柄式磁压缩系统旋转。然后横插入一块金属片,部分电子就会从电子束上脱离。最后,电子束再次旋转回原位。由于部分电子缺失,输出电子束的最终能谱发生了改变,从而可以推断出移除部分电子束位置的加速场强度。如果将电子束切得足够薄,则可以用飞秒的瞬时分辨率确定等离子体尾流中有效加速场的轮廓。在实验中,该团队能够实现15飞秒的分辨率——相当于尾流中大约千分之五毫米的空间分辨率。研究人员认为,甚至可获得更高的分辨率。 利用这项技术,可以详细研究各个实验组件与加速过程之间的相互作用,并有助于详细了解和优化等离子体尾波。