《经济型数控机床网络通讯及控制技术研究分析》

  • 来源专题:数控机床与工业机器人
  • 编译者: 杨芳
  • 发布时间:2017-09-25
  • 近年来,随着计算机和网络通讯为代表的信息技术的飞速发展和广泛应用,制造业无论是观念,还是技术都发生了很大的变化。传统的以相对固定的机器和生产场所为中心,由上至下进行管理控制的大批量制造生产模式正逐步向以人为中心,基于技术的先进制造生产模式转变。 全球制造的思想就是利用异地的资源(设备、知识、人力)来制造市场所需产品,从而加工单元的远程监控技术就成为它的重要组成部分。要实现加工单元的远程监控,首要解决的问题是数控机床的网络通讯和控制技术问题。   

      

    本项目就是解决传统经济型的数控机床的网络通讯和控制技术问题,通过网络来实现NC程序的中央服务器集中管理及网络通讯。从而适应现代先进制造技术的发展。   

    1、需求分析   

    1.1 传统经济型数控机床存在的问题   

      

    传统经济型的数控加工设备按数控系统分类主要有:FANUC系统(其中包括3T、7M、HC-6、6MB等)、AB公司系统、国产3B线切割系统等:按数控程序输入/输出通讯接口类型分有三类:一类为仅有RS232/RS422串行口,二类为仅有纸带阅读机8/5单位并行口,三类同时包括前两类接口。这三类机床同时还存在同样的问题就是:内存容量较小,不适应复杂、大型面、高精度、长程序零件的加工:它们的对外接口能力差,没有DNC功能,不能实现在线加工以及网络控制等问题。   

    1.2 希望的解决方案   

      

    本着满足最基本的应用需求、且留有一定的可扩充性及性能提高的潜力的前提,来改善数控加工技术应用环境。就此提出了以下解决方案:机床通讯接口的硬件改造,针对各类机床设计相应的通讯接口板卡:通讯控制软件的开发,以实现各机床的单机通讯功能:开发其它辅助功能(如:数控程序中加工信息的提取、数控程序图形模拟、长程序的在线加工等),弥补和增强原数控系统功能:网络体系的选择与通讯协议的定义及网络系统控制软件的开发,实现数控程序的中央服务器集中管理和网络通讯。   

    2、系统结构   

    2.1 网络系统构成及功能   

      

    整个网络系统是由中央服务器、网络接口、双向数据转换器、现场服务器、1分N口并行数据收发器、数据接收器以及经济型数控机床等组成。

      

    中央服务器是整个网络的中枢部分,它主要完成的是对各级服务器的整体控制。它采用后台中断工作模式,不需要人的干预,而且其前台还可以进行其他工作。   

      

    现场服务器是客户端,既担任起数控服务器的功能,又具有强大的网络通讯功能,它接受中央服务器下达的各项任务:从网络上获取由中央服务器传来的数控加工程序的数据信息,并把这些数据信息传送到NC文件库:将已加工过的数控程序反馈到中央服务器。能从系统的NC文件库中提取相应的数控代码,并从中提取有关的加工零件数据和信息,对其进行处理,实现NC程序的图形模拟等工作。另外,对需用长程序的零件加工,现场服务器还完成长程序的在线加工任务。   

      

    现场服务器可同时服务于多台数控设备,根据需要在车间一定的空间范围内(比如:一个小的工作间,一个小的局部区域)设置网络节点,放置一台PC机作为现场服务器,一台服务器根据实际需要靠选用1分N口并行数据收发器来服务于多台数控设备。   

    2.2 系统网络体系结构及通信协议的选择   

      

    系统中的各种信息都是通过网络来传输的。在计算机网络发展上,影响较大的网络体系主要有:OSI七层参考模型和TCP/IP体系结构模型。OSI参考模型是ISO7498国际标准。TCP/IP体系结构是当前流行的Internet网络所使用的体系结构,尽管它不是国际标准,但在计算机网络体系结构中却占有非常重要的地位。这是因为虽然OSI的体系结构从理论上讲比较完整,其各层协议也考虑得很周全,但事实上,完全符合OSI各层协议的商用产品却极少进入市场,远远不能满足各种用户的需求。然而使用TCP/IP协议的产品却大量涌入市场,几乎所有的工作站都配有TCP/IP协议,并已成为计算机网络事实上的标准,通称“工业标准”。为此,我们在数控机床的网络通讯系统中,采用的是TCP/IP的网络体系结构,该体系把计算机网络分为四层,即应用层、传输层、网络层和网络接口层。   

      

    TCP/IP体系结构为传输层制定了两种协议即:传输控制协议(TCP)和用户数据包协议(UDP),UDP为用户提供进程无连接的数据报协议,数据包以独立包的形式传送,服务不提供无错保证,数据可能丢失、重复或失序:数据包的长度也受一次处理最大长度的限制(默认值为8192字节,最大值为32768字节),不进行包的拆分和重组操作:而TCP协议是一个可靠的全双工的字节流的面向连接的协议,TCP和UDP相比传输可靠、数据无差错、无重复,可按发送顺序接收,数据为字节流,其长度不受限制,为用户提供虚电路服务,并为数据的可靠传输提供检验。根据数控加工的特点,尽管数据包在传输量小于2048个字节时UDP可靠性更好,但数据包服务是单包、无序传送,而系统的网络通信显然不能保证所有传输的信息都小于2048个字节,因此,只能选用TCP作为系统的传输层协议。   

      

    应用层的通讯协议的选择既要考虑到数控加工的特点又要具备实时性、可靠性以及数据传输量大等特点。本系统另行开发了基于TCP/IP协议族的相应协议,制定了应用进程之间传输的信息的特殊含义。   

    2.3 通讯协议的实现   

      

    系统协议,就是保证客户端和服务器端的应用线程之间能相互准确、及时、有序地传送信息,并能彼此毫无差错地对信息进行语法分析和解释。   

      

    对于网络控制系统,其传输信息有自己独特的含义。在客户端和中央服务器间传递的信息,主要有客户端的请求信息、数据信息和中央服务器端的状态信息。   客户端的控制信息又分为两种:网络控制信息和加工控制信息:服务器端的状态信息也分为两种:连接状态信息和客户端的状态信息。   

      

    在系统的协议中,这些信息都规定了相应的格式规范,客户端的网络控制信息主要用于与服务器连接的建立、维持和释放。加工控制信息由控制命令字、控制参数组成。网络通讯协议格式为:“cmd,1byte命令代码,1byte命令长度,命令参数,4字节的校验码(XC)”。‘cmd’为命令引导码,用以标识命令的开始:‘命令长度’只包括命令参数及校验码的长度。若无命令参数,则为4,校验码将无意义也不被检验,但还是必须发送。   

      

    传输的数据包的末尾4字节为校验码。前3字节为该包的所有字节的和,第4字节为所有字节的异或值。若发送过程中有数据发生错误,则第4字节的校验码一定不正确。因此,靠监测第4字节校验码来保证通讯数据的可靠性。   

    3、硬件设计原理   

      

    系统在服务器端使用2/4/8口RS422A接口卡进行转接,进入现场后采用RS-422/RS-485双向数据转换器转接至现场服务器。2/4/8口RS422A接口卡与RS-422/RS-485双向转换器均采用工业控制标准接口板卡。   

      

    当现场服务器服务于多台数控机床时,采用“1分N口并行数据收发器”分接于多台机床。“数据接收器”是专门针对仅有纸带阅读机8/5单位并行口的机床(如线切割机)而设计的。它完成机床与PC机的通讯以及实现数控程序的在线加工。使用数据接收器时,在机床接线上要作相应改动,即:在原纸带阅读机的输出信号线上通过三态门并入相应的3B代码数据信号,将原系统发送给纸带阅读机的步进信号作为控制系统写入数据的定时信号。系统设计时,设置了控制开关,用于选择使用原纸带阅读机还是使用数据接收器。   

    4、软件开发原理   

      

    系统的软件由两部分组成,一是网络控制系统的控制软件,再一个就是现场服务器与各类机床的通讯软件。   

      

    网络控制系统控制软件的开发原理   

      

    网络控制系统的控制软件安装于中央服务器中,其设计原理是:中央服务器不停地接收并分析从各端口送来的请求、命令、信息等数据包。当一个数据包接收完毕后,它将首先通过包中的校验码进行验证该包在传送过程中是否出错。若出错,它将发出“重发”命令给原发客户端:若正确则进行相应的处理。   

      

    现场服务器与各类机床的通讯软件开发原理   

      

    针对各类机床与现场服务器的通讯,软件开发的基本原理是:要将数控程序传入数控机床,首先将数控程序转换为机床能识别的代码EIA码或ISO码,然后以数据包的方式读入现场服务器内存,再逐字节地向数控机床控制系统发送,同时计算机不停地监测机床接口的状态寄存器的状态。从机床传出数据,通讯控制软件总是从其程序代码的末端开始至常规内存的顶端(0A0000H)作为接收数据的缓冲区。 .

相关报告
  • 《2018中国数控机床行业现状分析与前景预测》

    • 来源专题:数控机床与工业机器人
    • 编译者:杨芳
    • 发布时间:2018-06-21
    • 从我国数控机床市场看,受益于我国汽车、航空航天、船舶、电力设备、工程机械等行业快速发展,对机床市场尤其是数控机床产生了巨大需求,数控机床行业成长迅猛 数控机床是数字控制机床,是一种装有程序控制系统的自动化机床。根据数控机床的性能、档次的不同,数控机床产品可分为高档数控机床、中档数控机床、低档数控机床。高档数控机床是指具有高速、精密、智能、复合、多轴联动、网络通信等功能的数控机床。   机床作为“工业之母”,是一个国家制造业水平高低的象征。数控机床是由美国发明家约翰·帕森斯上个世纪发明的。随着电子信息技术的发展,世界机床业已进入了以数字化制造技术为核心的机电一体化时代,其中数控机床就是代表产品之一。数控机床是一种高效能的,装有程序控制系统的自动化机床,能较好地解决复杂、精密、小批量、多品种的零件加工问题,代表着现代机床控制技术的发展方向。   欧、美、日等工业化国家已先后完成了数控机床产业化进程,而中国从20世纪80年代开始起步,现在处于发展阶段。虽然我国的铸造机床产业取得了一定的成绩,但仍然面临着许多制约性问题,与国外产品相比,中国数控机床的差距主要是在机床的高速高效化和精密化上。   数控机床市场规模高企,2017年超过3000亿元   从我国数控机床市场看,受益于我国汽车、航空航天、船舶、电力设备、工程机械等行业快速发展,对机床市场尤其是数控机床产生了巨大需求,数控机床行业成长迅猛。据统计,2014-2016年,我国数控机床销售收入均超过2400亿元;2016年,我国数控机床销售额为2732.3亿元,同比增长7.69%。2017年销售额约为3060.3亿元,首次超过3000亿元。   下游应用仍以汽车产业为主,消费电子将成未来应用主流市场   从数控机床行业下游消费需求比重来看,汽车是主要的下游需求领域,消费占比约为42%;其次是航空航天,消费比重约为18%;模具和工程机械分别为数控机械第三和第四消费领域,占比分别在15%和10%左右。   未来,随着智能手机的逐步普及、更新换代速度的加快,平板电脑、可穿戴设备等消费电子产品、通信等3C产业终端设备的推广及发展,3C行业将迎来发展的春天,消费电子行业产品并将成为行业的新增长点,并有力推动应用于该领域的轻型切削数控机床的发展。   数控机床产品需求结构矛盾升级,高端产品国产化率低   近年来,我国数控机床行业出现了明显的供需矛盾,主要体现在低档数控机床的产能过剩和高档数控机床的供应不足而导致供给侧结构性失衡。由于低档数控机床行业门槛低,进入企业多,且近几年低档数控机床市场有效需求不足,该领域已经出现产能过剩的现象;另一方面,随着国民经济的发展以及产业结构的升级,高档数控机床的应用越加普及,产品需求越来越大,供给却难以满足需求。   由于我国高档数控机床起步较晚,目前国产产能不能满足国内需求,国内大多数高档数控机床依赖进口。 2016年,数控机床专项支持研发的高档数控系统已累计销售1000余套,国内市场占有率由专项启动前的不足1%提高到了5%左右,2017年我国高档数控机床的国产化率大约在6%左右,依然较小。但从需求方面看,2013年我国高端数控机床的需求占比已经达到了10%左右,2017年大约在15-20%之间,与6%的国产化率相比差距甚大。   当前我国制造业亟需从“制造大国”向“制造强国”转变。我国数控机床行业经过几十年的发展,成为了全球最大的产销国,技术和产能发展迅速,已经具备响应国家制造业转型的基础,未来我国数控机床需求将由中低档向高档转变,换言之高档数控机床将具有较大的进口替代空间。   三大趋势引领,未来我国数控机床市场将超5000亿元   “十三五”规划的经济发展重点在于实现经济增长方式的转变,先进制造业是传统制造业的改造方向,电子信息、生物工程、新能源新材料等高新技术产业的发展将为精密、高效、专用数控机床开辟了新的需求;从地域发展分析,中国东部产业的升级、东北等老工业基地的振兴和中西部的开发加快步伐,为数控机床产业发展提供国内市场;经济全球化,国际资本和产业向中国的转移、国际技术和人才的交流、中国国际贸易的强劲发展等,为中国数控机床产业的发展提供了外部环境,使数控机床行业处于难得的战略发展期。未来,中国数控机床行业将主要呈现以下三大发展趋势:   首先,国产数控机床综合竞争力将大幅提高,从而引起国产数控机床的市场占有率将出现根本的变化。   其次,一批跨国机床集团在中国设立的独资企业或合资企业,如德国德马吉、美国哈挺、日本小巨人等,本地化生产将形成生产能力。   最后,普及型数控机床产业化将形成。普及型数控机床和加工中心数控机床是各类产品中发展最快、所占比重最大的一类产品,也是制造业应用最广的一类设备。普及型数控机床作为中档型数控机床,已成为消费的主流,其在数控机床中所占比例已超过30%,增长速度远高于其他类型机床,包括数控机床的增长速度。   2018-2023年,我国数控机床由于技术发展以及下游市场逐渐复苏等原因,仍会保持10%-12%的增长速度。到2023年,我国数控机床行业的市场规模将突破5,000亿元。
  • 《数控机床如何实现智能化?》

    • 来源专题:数控机床与工业机器人
    • 编译者:杨芳
    • 发布时间:2017-06-20
    •  智能机床最早出现在赖特(P·K·Wright)与伯恩(D·A·Bourne)1998年出版的智能制造研究领域的首本专著《智能制造》(Manufacturing Intelligence)中。由于对先进制造业具有重要作用,智能技术引起各个国家的重视。美国推出了智能加工平台计划(SMPI);欧洲实施 “Next Generation Production System”研究;德国推出了“Industry 4.0”计划;中国中长期科技发展对“数字化智能化制造技术”提出了迫切需求,并制定了相应的“十三五”发展规划;在2006年美国芝加哥国际制造技术展览会(IMTS2006)上,日本Mazak公司推出的首次命名为“Intelligent Machine”的智能机床和日本Okuma公司推出的命名为“thinc”的智能数控系统,开启了数控机床智能化时代。 本文从传感器出发,将数控机床的智能技术按层次划分为智能传感器、智能功能、智能部件、智能系统等部分,对智能技术进行了总结,指出不足,揭示了发展方向,并对未来进行了展望。   智能传感器由机床、刀具、工件组成的数控机床制造系统在加工过程中,随着材料的切除,伴随着多种复杂的物理现象,隐含着丰富的信息。在这种动态、非线性、时变、非确定性环境中,数控机床自身的感知技术是实现智能化的基本条件。 数控机床要实现智能,需要各种传感器收集外部环境和内部状态信息,近似人类五官感知环境变化的功能,如表1所示。对人来讲,眼睛是五官中最重要的感觉器官,能获得90%以上的环境信息,但视觉传感器在数控机床中的应用还比较少。随着自动化和智能化水平的提高,视觉功能在数控机床中将发挥越来越重要的作用。表1数控机床可用传感器   随着MEMS(微机电系统)技术、嵌入技术、智能材料与结构等技术的发展,传感器趋向小型化。MEMS微传感器、薄膜传感器以及光纤传感器等微型传感器的成熟应用,为传感器嵌入数控机床奠定了基础。 由于制造过程中存在不可预测或不能预料的复杂现象和奇怪问题,以及所监测到的信息存在时效性、精确性、完整性等问题,因此,要求传感器具有分析、推理、学等智能,这要求传感器要有高性能智能处理器来充当“大脑”。美国高通公司正在研制能够模拟人脑工作的人工智能系统微处理器。将来可通过半导体集成技术,将高性能人工智能系统微处理器与传感器、信号处理电路、I/O接口等集成在同一芯片上,形成大规模集成电路式智能传感器,不但具有检测、识别、记忆、分析等功能,而且具有自学甚至思维能力。相信随着计算机技术、信号处理技术、MEMS技术、高新材料技术、无线通信技术等不断进步,智能传感器将会在数控机床智能感知方面带来全新变革。   智能功能数控机床向高速、高效、高精化发展,要求数控机床具有热补偿、振动监测、磨损监测、状态监测与故障诊断等智能功能。融合几个或几种智能传感器,采用人工智能方法,通过识别、分析、判断及推理,实现数控机床的智能功能,为智能部件的实现打下基础。 数控机床的误差包括几何误差、热(变形)误差、力(变形)误差、装配误差等。研究表明,几何误差、热误差占到机床总误差的50%以上,是影响机床加工精度的关键因素,如图1所示。其中,几何误差是制造、装配过程中造成的与机床结构本身有关的误差,随时间变化不大,属于静态误差,误差预测模型相对简单,可以通过系统的补偿功能得到有效控制,而热误差随时间变化很大,属于动态误差,误差预测模型复杂,是国际研究的难点和热点。   数控机床在加工过程中的热源包括轴承、滚珠丝杠、电机、齿轮箱、导轨、刀具等。这些部件的升温会引起主轴延伸、坐标变化、刀具伸长等变化,造成机床误差增大。由于温度敏感点多、分布广,温度测试点位置优化设计很重要,主要方法有遗传算法、神经网络、模糊聚类、粗糙集、信息论、灰色系统等[6]。在确定了温度测点的基础上,常用神经网络、遗传算法、模糊逻辑、灰色系统、支持向量机等来进行误差预测与补偿。   在航空航天领域,随着钛合金、镍合金、高强度钢等难加工材料的广泛应用,以及高速切削条件下,切削量的不断增大,刀具、工件间很容易发生振动,严重影响工件的加工精度和表面质量。由于切削力是切削过程的原始特征信号,最能反映加工过程的动态特性,因此可以借助切削力监测与预报进行振动监测。借助测力仪、力传感器、进给电机的电流等,利用粒子群算法、模糊理论、遗传算法、灰色理论等对切削力进行建模和预测。考虑到引起机床振动的原因主要有主轴、丝杠、轴承等部件,也可以采集这些部件的振动、切削力、声发射等信号,利用神经网络、模糊逻辑、支持向量机等智能方法直接进行振动监测。   刀具安装在主轴前端,与加工工件接触,直接切削工件表面,对加工质量的影响是最直接和关键的。刀具磨损、破损等异常现象影响加工精度和工作安全。鉴于直接测量法需要离线检测的缺陷,常采集电流、切削力、振动、功率、温度等一种或多种间接信号,采用RBF神经网络、模糊神经网络、小波神经网络、支持向量机等智能算法对刀具磨损状态进行智能监测。 随着自动化程度的提高,数控机床集成越来越多的功能,复杂程度不断提高。为了高效运行,对数控机床的内部状态进行监测与性能评价、对故障进行预警与诊断十分必要。由于故障模式再现性不强,样本采集困难,因此BP神经网络等要求样本多的智能方法不适合这种场合。状态监测与故障诊断常采用SOM神经网络、模糊逻辑、支持向量机、专家系统和多Agent等智能方法。 研究人员不断探索和研究智能功能的新方法或多种方法的混合,但大部分集中在实验室环境下,缺少实时性高、在线功能强的方法,尚需深入发展简洁、快速、适应性强的智能方法。   智能部件数控机床机械部分主要包括支撑结构件、主传动件、进给传动件、刀具等部分,涉及到床身、立柱、主轴、刀具、丝杠与导轨以及旋转轴等部件。这些部件可以集成智能传感器的一种或几种智能功能构成数控机床智能部件。   主轴是主传动部件,作为核心部件,直接关系到工件加工精度。由于主轴转速较高,特别是电主轴,发热、磨损、振动对加工质量影响很大,因此,越来越多的智能传感器被集成到主轴中,实现对工作状态的监控、预警以及补偿等功能。日本山崎马扎克研制的“智能主轴”,装有温度、振动、位移及距离等多种传感器,不但具有温度、振动、夹具寿命监控和防护功能,而且能够根据温度、振动状态,智能协调加工参数。瑞士Step-Tec、IBAG等制造的电主轴,装有温度、加速度、轴向位移等多种传感器,如图3所示,能够进行热补偿、振动监测等。