《一种新型的两步机械铣削方法和原位反应合成方法,用于制备TiC/石墨烯/Cu纳米复合材料并研究其力学性能》

  • 来源专题:纳米科技
  • 编译者: 郭文姣
  • 发布时间:2018-08-06
  • TiC-Graphene /铜混合纳米复合材料是捏造的混合铜、Ti(C)和石墨粉在三个不同的抽搐百分比(20、40、60?卷%)通过两步球磨(8?+?8)h和原位反应烧结。利用x射线衍射(XRD)、扫描/透射电子显微镜(SEM/TEM)对合成复合材料的微观结构进行了表征,并通过显微硬度和磨损试验对其力学性能进行了评价。微观结构研究表明,制备的复合材料是由铜基体和纳米TiC纳米颗粒的均匀分布以及孔隙度最小的石墨烯层(未反应的碳层)组成的。TiC的加入降低了烧结复合材料的密度。随着钢筋体积分数的增加,纳米复合材料的显微硬度增加。Cu-40?卷%抽搐纳米复合材料表现出最低的摩擦系数约为0.17,最高的耐磨性与WC配合端面。

    ——文章发布于2018年9月12日

相关报告
  • 《【Chemical Engineering Journal 】一种用于制氢的新型两步电解水方法》

    • 来源专题:新能源汽车
    • 编译者:王晓丽
    • 发布时间:2024-07-09
    • 中国科学院合肥物质科学研究院陈长伦教授领导的研究团队开发了先进的掺钴氢氧化镍双极电极和非贵金属催化剂,显著提高了两步水电解制氢的效率和稳定性。该成果发表在 Chemical Engineering Journal 和 Journal of Colloid and Interface Science.上。 在传统碱性电解槽中,氢气和氧气同时产生,即便使用昂贵的膜分离器,在高压下也无法完全避免氢氧混合;另外由于可再生能源频率/功率的波动性,使传统碱水制氢难以与其匹配。为此,两步法电解水制氢技术通过一个能够存储和释放电子的双极电极将产氢和产氧步骤完全拆分而不受限于时间和空间,在不使用膜分离器情况下实现高效制氢,突破了高压制氢气体渗透混杂这一技术瓶颈。两步法电解水制氢与传统的电解水制氢技术相比,具有空间优越调变性、简化工艺、降低造价、提高制氢效率等独特优势。 两步法电解水制氢关键在于高性能双极电极材料制备和电解槽结构设计。两步法电解水系统常用的双极电极材料是氢氧化镍,但其电子缓冲性能需要大幅提高以及充放电性能稳定问题,基于此,课题组采用简单的一步电沉积法在碳布基底上合成少量钴掺杂的柔性氢氧化镍双极电极。结果表明适当的钴掺杂能提高电极电导率和电子缓存性能,并能引起电荷再分配,并且避免在初始产氢过程中发生寄生的产氧现象。 制备具有突出催化活性和优良稳定性的非贵金属产氢产氧双功能催化剂对于碱性水电解制氢有重要意义。课题组设计了蜂窝状三维掺钼磷化镍钴和氧等离子体诱导的均相铁复合钴氧化物/磷化物纳米线双功能电催化电极,具有高耐久性和优良活性,且析氢和析氧过电位均较低。采用氢氧化镍双极电极并通过切换电流方向的方式实现不同时间、地点的产氢和产氧,电解槽具有较低的槽压、较高的解耦效率和能量转换效率。 层状双氢氧化物是一种高容量电极材料,但其有限的电容量和固有的差导电性及稳定性限制了其在储能领域的应用。目前对层状双氢氧化物电极材料的修饰方式有多种,然而往往比较繁琐或是需要严苛的高温条件以及有毒/污染性的化学试剂。基于此,课题组采用绿色且高效的低温等离子体技术辅助制备了氮掺杂镍钴层状双氢氧化物和氮掺杂还原氧化石墨烯/镍钴层状双氢氧化物双极电极,有效提升了电极的电容量和导电性等性能。 两步法电解水制氢在大规模电解储氢和野外分散式风光储氢,如5G基站、数据中心等数字新基建中具有重要意义。目前合作团队设计制造出两步法电解水制氢的试验装置,已被授权5项国家发明专利。此外,团队综述了海水电解制氢的原理和研究进展;各种电催化剂的设计策略;电催化剂性能评价;电解机理等,最后提出了海水电解技术的发展前景和面临的挑战以及未来氢能生产的发展方向。相关研究得到了合肥综合性国家科学中心能源研究院(安徽省能源实验室)和国家自然科学基金等项目的支持。 论文链接: [1] https://doi.org/10.1016/j.jcis.2023.06.102 [2] https://doi.org/10.1016/j.jcis.2023.03.131 [3] https://doi.org/10.1016/j.cej.2023.147374 [4] https://doi.org/10.1016/j.apsusc.2023.159006 [5] https://doi.org/10.1016/j.jcis.2024.06.135 [6] https://doi.org/10.1016/j.ijhydene.2024.05.471
  • 《添加石墨烯制造的新型复合材料鞋》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:姜山
    • 发布时间:2017-11-13
    • 在市场上出现的新产品中, 已经应用石墨烯材料能够为普通物体添加了一些功能性的能力: 具有更好散热性能的鞋类。由意大利Istituto Italiano di Tecnologia的石墨烯旗舰公司与在意大利处于领先地位的托斯卡纳制鞋公司FADEL合作研发, FADEL公司获得有关专利的新研发的技术使得鞋类具备了更好的温度调节和耐久性。 在这款新型鞋的制造过程中,当将几层石墨烯薄片添加到聚氨酯(FADEL鞋底的材料)中,实验室测试显示出材料中分散的热量在升高,防水性能变得更强以及抗菌性能得到不断改善。结合为这种拥有更好的用户体验的特殊类型的鞋开发的透风装置取得的这些效果。这款鞋的原型参加了在米兰的国际鞋类展览会的展示。 石墨烯由于其独特的二维模型结构所带来的优异的导电性能,力学性能和散热性能开创了广阔的应用领域,吸引了越来越多的关注。这种令人着迷的特性使石墨烯成为各种实际应用中的很有前景的制备材料。通过对石墨烯进行功能化改性,可以轻易地制备出不同的石墨烯纳米复合材料。可最大程度上保留石墨烯本体属性,并通过功能化引入其它一些有意义的特性。进一步的深入研究将获得一系列性能更为优异的新型石墨烯功能材料,并从科学及技术上为进一步实现该类材料的实际应用奠定基础。 石墨烯的主要特性之一是它散热性能优越,因此我们开始考虑将通过液相剥离方式产生的石墨烯(可以以较低的价格生产大量石墨烯的方法)结合到聚氨酯中——用于聚氨酯这种材料鞋类的鞋底。这样就创造出了一种散热效果比纯聚氨酯材料要好50%的复合材料。IIT石墨烯实验室主任、石墨烯旗舰公司行政委员会主席维托里奥•佩莱格里尼(Vittorio Pellegrini)说。“我们用少量的石墨烯(约1%)改善了鞋类的散热性能,这在生产所用成本并没有比以前多很多的产品方面非常重要。” 一旦IIT石墨烯实验室的研究人员已经优化了石墨烯添加进聚苯乙烯的方式,由IIT的初创公司和石墨烯旗舰公司协会会员BeDimensional srl完成了石墨烯生产,其核心操作是在添加石墨烯以及在制造业应用领域的其他有关材料的新型复合材料的研发基础上进行。 石墨烯旗舰公司是知识、技能和技术转让的强大加速器。佩莱格里尼说,如果没有石墨烯旗舰公司这只鞋,这种鞋还将需要很多年才能研发出来。我们从分享我们的研究成果和通过旗舰公司从其他科学家那里获得灵感的能力中受益匪浅。 石墨烯旗舰公司的创新主管Kari Hjelt博士说,我们将继续见证石墨烯技术带来市场波动以及改革创新的潜力。石墨烯能够同时增强多个产品属性的特殊性能,并且就像目前的情况一样,可以为许多产品创造一个商业上的竞争优势。 石墨烯旗舰公司的科学技术职员兼管理小组主席安德里亚·c·法拉利(Andrea c . Ferrari)教授补充说,这是石墨烯及相关材料从实验室向工厂车间稳步迈进的又一例证。随着越来越多的公司成为合作伙伴或旗舰公司的联合成员,旗舰公司不仅推动了石墨烯和相关材料的科学技术的发展,而且还推动了改革创新。