《重磅 | 中国首颗6英寸氧化镓单晶成功制备》

  • 来源专题:光电情报网信息监测服务平台
  • 编译者: husisi
  • 发布时间:2023-03-03
  • 近日,中国电科46所成功制备出我国首颗6英寸氧化镓单晶,达到国际最高水平。

    据“中国电科”消息,中国电科46所氧化镓团队从大尺寸氧化镓热场设计出发,成功构建了适用于6英寸氧化镓单晶生长的热场结构,突破了6英寸氧化镓单晶生长技术,可用于6英寸氧化镓单晶衬底片的研制,将有力支撑我国氧化镓材料实用化进程和相关产业发展。

    1、国内氧化镓研发进展捷报频传

    目前,我国从事氧化镓相关业务的企业包括北京镓族科技、杭州富加镓业、北京铭镓半导体、深圳进化半导体等。此外,除中电科46所,上海光机所、上海微系统所、复旦大学、南京大学等各大科研高校也在从事相关研究。近期,我国在氧化镓方面的研发进展也频传捷报。

    北京铭镓半导体于2022年12月完成4英寸氧化镓晶圆衬底技术突破,成为国内首个掌握第四代半导体氧化镓材料4英寸(001)相单晶衬底生长技术的产业化公司。

    上市公司新湖中宝投资的杭州富加镓业已经初步建立了氧化镓单晶材料设计、热场模拟仿真、单晶生长、晶圆加工等全链路研发能力,推出2寸及以下规格的氧化镓UID(非故意掺杂)、导电型及绝缘型产品。

    浙大杭州科创中心也于2022年5月成功制备直径2英寸(50.8mm)的氧化镓晶圆,而使用这种具有完全自主知识产权技术生长的2英寸氧化镓晶圆在国际尚属首次。

    中国科大国家示范性微电子学院教授龙世兵课题组于2023年初首次研制出氧化镓垂直槽栅场效应晶体管。而就此前不久,龙世兵课题组相关研究论文成功被世界顶级技术论坛IEEE IEDM大会接收,这也是中国科大首次以第一作者单位在IEEE IEDM上发表论文。

    2、第四代半导体“呼啸而来”

    近年来,以碳化硅、氮化镓为主的第三代半导体材料市场需求爆发,成功赢得了各大厂商的青睐。而与此同时,第四代半导体材料也凭借其高耐压、低损耗、高效率、小尺寸等特性,成功进入人们的视野。

    据了解,在第四代半导体材料中,尤以氧化镓备受业界关注。作为新型超宽禁带半导体材料,氧化镓在微电子与光电子领域均拥有广阔的应用前景,可以有效降低新能源汽车、轨道交通、可再生能源发电等领域在能源方面的消耗。

    为进一步推动氧化镓产业发展,科技部高新司甚至已于2017年便将其列入重点研发计划。此外,安徽、北京等省市也将氧化镓列为了重点研发对象。

    尽管氧化镓发展尚处于初期阶段,但其市场前景依然备受期待。有数据显示,到2030年,氧化镓功率半导体市场规模将达15亿美元。

    中国科学院院士郝跃认为,氧化镓材料是最有可能在未来大放异彩的材料之一,在未来的10年左右,氧化镓器件有可能成为有竞争力的电力电子器件,会直接与碳化硅器件竞争。业内普遍认为,未来,氧化镓有望替代碳化硅和氮化镓成为新一代半导体材料的代表。

相关报告
  • 《前沿 | 第四代半导体新进展:4英寸氧化镓单晶导电型掺杂》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:胡思思
    • 发布时间:2025-02-17
    • 最近氧化镓领域又有了新的进展。今年1月,镓仁半导体宣布基于自主研发的氧化镓专用晶体生长设备进行工艺优化,采用垂直布里奇曼(VB)法成功实现4英寸氧化镓单晶的导电型掺杂。本次生长4英寸导电型氧化镓单晶仍沿用了细籽晶诱导+锥面放肩技术,籽晶与晶体轴向平行于[010]晶向,可加工4英寸(010)面衬底,适合SBD等高功率器件应用。 在以碳化硅和氮化镓为主的第三代半导体之后,氧化镓被视为是下一代半导体的最佳材料之一。氧化镓具有多种同分异构体,其中β-Ga2O3(β相氧化镓)最为稳定,也是目前在半导体应用中被研究最多,距离商业化应用最近的一种。 氧化镓本身的材料特性极为优异。我们都知道第三代半导体也被称为宽禁带半导体,而第四代半导体的一个重要特性就是“超宽禁带”,禁带宽度在4eV以上(金刚石5.5eV,β-Ga2O3禁带宽度4.2-4.9eV),相比之下,第三代半导体中碳化硅禁带宽度仅为3.2eV,氮化镓也只有3.4eV。 更宽的禁带,带来的优势是击穿电场强度更大,反映到器件上就是耐压值更高,同样以主流的β结构Ga2O3材料为例,其击穿电场强度约为8MV/cm,是硅的20倍以上,相比碳化硅和氮化镓也高出一倍以上。 在应用层面上,氧化镓主要被应用于光电以及高功率器件的领域。 2022年美国商务部工业和安全局的文件中披露,美国将对氧化镓和金刚石两种超宽禁带半导体衬底实施出口管制,也足以证明第四代半导体的重要性。 作为超宽禁带半导体(禁带宽度约4.8-4.9 eV),氧化镓其高击穿场强和热稳定性适合高压、高温应用,但本征缺陷常使其呈弱n型导电。通过掺入杂质改变半导体的导电类型(n型或p型)及载流子浓度。n型掺杂引入自由电子,p型掺杂引入空穴。 所以氧化镓单晶的导电型掺杂是解锁其在功率电子、深紫外光电器件等领域潜力的核心步骤。 与此同时,镓仁半导体在这次实现4英寸氧化镓单晶的导电型掺杂中采用了VB法,并使用自研的VB法长晶设备。去年9月,镓仁半导体推出了首台自研氧化镓专用晶体生长设备,不仅能够满足氧化镓生长对高温和高氧环境的需求,而且能够进行全自动化晶体生长,减少了人工干预,显著提高了生产效率和晶体质量。 据介绍,目前镓仁半导体VB法氧化镓长晶设备及工艺包已全面开放销售。 最近,国内氧化镓产业在大尺寸单晶衬底制备方面有不少新进展,杭州富加镓业通过自主研发的垂直布里奇曼(VB)法,成功实现4英寸导电型掺杂氧化镓单晶的稳定生长,并进一步开发了6英寸单晶衬底,厚度达12mm,可切割更多晶片,显著降低成本;铭镓半导体也宣布全球首创4英寸氧化镓晶坯技术,推动材料规模化生产。 氧化镓凭借其超宽禁带、低成本和耐高压特性,正从实验室迈向产业化。尽管面临热管理、产业链整合等挑战,随着技术突破和政策支持,其有望在功率电子和光电领域掀起新一轮半导体革命。
  • 《我国实现米级单晶石墨烯的制备》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:姜山
    • 发布时间:2017-11-23
    • 石墨烯是典型的二维轻元素量子材料体系,具有优越的量子特性。科学界在石墨烯体系中观察到了许多量子现象和量子效应,石墨烯已经成为凝聚态物理研究领域的重要量子体系,在未来量子信息、量子计算和量子通讯等领域具有广泛的应用前景。如何获得大尺寸单晶石墨烯是石墨烯研究领域的热点和难点,是实现石墨烯工业化应用的基础。虽然利用化学气相沉积方法(CVD)方法已经实现了米级多晶石墨烯薄膜的制备,但是米级单晶石墨烯薄膜技术还未被突破。 最近,在量子调控与量子信息重点专项项目的支持下,北京大学刘开辉研究员、俞大鹏院士、王恩哥院士及其合作者,继2016年首次实现石墨烯单晶的超快生长之后,在米级单晶石墨烯的生长方面再次取得重要进展。研究团队将工业多晶铜箔转化成了单晶铜箔,得到了世界上目前最大尺寸的单晶Cu(111)箔,利用外延生长技术和超快生长技术成功在20分钟内制备出世界最大尺寸(5×50 cm2)的外延单晶石墨烯材料。该研究结果为快速生长米级单晶石墨烯提供了必要的科学依据,为石墨烯单晶量子科技的产业化应用奠定基础。 该研究成果于2017年8月在《科学通报》(Science Bulletin)发表,并被选为封面文章。中国科学院沈阳金属研究所成会明院士同期在Science Bulletin发表重点推荐评论文章。 .