《娄继忠课题组与浙江大学合作在T细胞受体(TCR)抗原识别机制研究方面取得进展》

  • 来源专题:生物安全网络监测与评估
  • 编译者: yanyf@mail.las.ac.cn
  • 发布时间:2019-02-28
  • 2019年1月30日,娄继忠课题组与浙江大学基础医学院陈伟课题组合作在《Molecular Cell》在线发表了题为 “Mechano-regulation of peptide-MHC class I conformations determines TCR antigen recognition” 的研究成果。该论文联合运用分子动力学模拟、单分子力学操纵、分子生物学及免疫学等方法,从原子水平到细胞水平跨尺度揭示了生物力如何通过动态调控抗原呈递分子pMHC-I的构象变化来决定TCR的非我抗原识别过程,阐明了T细胞受体(T cell receptor, TCR)精准特异识别非我抗原的分子机制,为未来寻找肿瘤新生抗原(neoantigen)以及基于新抗原的T细胞免疫治疗提供了基础理论和技术支持。

      如何准确快速找到并清除受病原感染的细胞或者基因突变的肿瘤细胞是维护生命体健康的重要保障,人体免疫系统中的CD8+T淋巴细胞(T细胞)在此过程中的发挥着至关重要的作用。T细胞主要通过其表面受体TCR特异性识别靶细胞表面MHC-I分子呈递的“非我”或肿瘤新生抗原多肽(激动型),快速触发T细胞杀伤靶细胞的免疫功能。然而,我们体内抗原数目巨大(>1018),种类繁多,而且“非我”抗原和“自我”抗原的差别极小(往往仅相差几个氨基酸)。TCR如何迅速、精准地在浩如烟海的“自我”抗原中找到“非我”抗原是免疫学领域中最核心也是最本质的问题之一,也是未来临床基于T细胞的免疫治疗(特别是TCR-T)的核心之一,但是这种特异性识别的分子机制和结构基础仍不清楚。

      近年来的研究发现TCR作为一种生物力的感受器(force sensor)行使其功能,生物力会延长TCR与激动型抗原pMHC-I间的结合时间,形成“逆锁键”(catch bond),而对于非激动型抗原pMHC-I,TCR/pMHC-I结合时间则将被缩短,形成“滑移键”(slip bond),而快速累积“逆锁键”是激活TCR的抗原识别的决定性因素。

      本研究中,合作研究团队发现生物力首先通过增强激动型抗原热点残基(hotspot)和TCR的互作,引起TCR-MHC-I分子接触面上若干残基的构象变化,来增强TCR/pMHC的结合强度,进而进一步触发MHC分子的β2m子链与α子链发生部分解离,引起α子链明显的转动构象变化,从而TCR和MHC表面产生了新的互作残基,最终延长了TCR-pMHC-I之间的结合时间,产生“逆锁键”以激活TCR;而对于非激动型抗原,缺少了关键热点残基诱发的生物力增强效果,进而无法产生“逆锁键”,也无法激活TCR。因此,生物力通过引发pMHC-I的构象变化,多部级联放大激动型和非激动型抗原肽的差别,帮助TCR实现精准的抗原识别。进一步研究发现,人MHC-I分子HLA-A2的肿瘤相关突变通过在α子链与β2m子链接触面上引起额外的氢键抑制HLA-A2的构象变化,从而减弱TCR/pMHC的逆锁键,潜在性地减弱或者破坏了TCR的抗原识别以及T细胞的活化。该研究结果不仅为T细胞精确区分不同抗原提供了重要的理论依据,同时也为新生抗原的精确预测、新型肿瘤抗原特异性的TCR-T细胞免疫治疗方案的研发提供了关键信息。

      浙江大学基础医学院博士研究生武鹏、张同同和机械工程学院博士研究生费攀宇,美国犹他大学刘宝玉博士以及中国科学院生物物理所研究助理崔蕾为该论文的共同第一作者,浙江大学基础医学院陈伟教授和中国科学院生物物理所娄继忠研究员为该论文的共同通讯作者。该研究获得了国家科技部蛋白质重大研究计划项目、国家自然科学基金委、浙江大学和中国科学院的基金支持。

相关报告
  • 《突破 | 浙江大学在量子点发光二极管研究方面取得进展》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2022-05-25
    • 近日,浙江大学金一政课题组、王林军课题组与华南理工大学黄飞/应磊团队合作,在高性能蓝、绿光量子点发光二极管(QLED)的开发上取得进展。研究者揭示了无机量子点/有机高分子界面的电荷转移机制,继而通过调控高分子空穴传输材料的分子结构,有效地抑制了器件的载流子泄漏,从而同时创造了蓝、绿光QLED的效率/寿命新纪录,尤其是绿光QLED的性能已经满足显示业界的应用需求。 QLED是一种以胶体量子点材料作为发光中心、可通过溶液工艺制备的电致发光器件,是下一代低成本、低能耗、广色域大屏显示技术的有力竞争者。显示应用需要红、绿、蓝三色器件。目前,红光QLED原型器件的效率、工作寿命等性能指标已满足产业化要求,但蓝、绿光QLED的性能仍低于应用需求。针对该瓶颈问题,研究者应用纳晶科技公司的高性能CdSe基量子点为模型系统,开展了机制研究,发现:有机空穴传输材料能级的能量无序会显著增强量子点/有机空穴传输层界面的电子泄漏,是造成蓝、绿光QLED效率损失的关键通道。具体地,相比于无机晶体量子点,有机无定形聚合物薄膜具有显著的结构无序度与较强的电-声子耦合作用,导致了较多的带尾态分布与较大的能级展宽。此外,单颗量子点的尺寸(约10 nm)远大于有机聚合物单元(约1~2 nm),形成了单给体-多受体的特殊界面。研究者结合QLED的光谱表征与界面电子转移的非绝热动力学模拟,确证上述效应显著增强了界面电子转移,导致器件中的漏电流。 图1 蓝、绿光QLED的界面电荷转移机制 在明晰了上述关键机制的基础上,研究团队设计并合成了系列基于刚性共聚单元的咔唑-芴交替共聚聚合物(PF8Cz,已在东莞伏安光电科技有限公司实现生产和销售),并通过合成方法的调控实现了高分子量。该材料与传统聚合物传输层相比,具有更浅的LUMO能级与更小的能量无序,因而表现出优异的电子阻挡能力。最终,利用此空穴传输材料,研究团队构筑了高性能蓝、绿光QLED原型器件,最高外量子效率分别达21.9%与28.7%,且高效率窗口覆盖了从显示到通用照明的亮度范围。蓝、绿光QLED分别实现了长达4400小时与58万小时的工作寿命(100尼特下亮度衰减95%),均是目前报道过的QLED最高值。 该研究为QLED器件的材料设计提供了关键的新策略,实现了性能满足显示应用需求的绿光QLED原型器件,有望推动量子点印刷显示技术的实用化进程。 图2 高性能绿光、蓝光量子点发光二极管
  • 《广州生物院在嵌合抗原受体T细胞功能改进优化方面取得新进展》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2018-12-14
    • 11月2日,中国科学院广州生物医药与健康研究院李鹏课题组在国际期刊OncoImmunology上在线发表了新的研究成果“DNAX-activating protein 10 co-stimulation enhances the anti-tumor efficacy of chimeric antigen receptor T cells”。该研究在CAR-T细胞中引入DAP10共刺激信号结构域,增强了CAR-T细胞的效应功能,并提升了CAR-T细胞对实体肿瘤的抗肿瘤活性。   嵌合抗原受体T细胞(Chimeric antigen receptor T cells,CAR-T)免疫疗法近年来在治疗多种类型的血液系统恶性肿瘤方面已经显示出了令人瞩目的疗效,但对大多数实体肿瘤的疗效依然不足。CAR胞内共刺激分子的优化能够影响CAR-T细胞多方面的抗肿瘤活性。研究报道了NKG2D是NK细胞表达的活化受体和T细胞的共刺激受体,而NKG2D受体的信号转导依赖于DNAX激活蛋白10(DAP10)。   该研究将DAP10的胞内信号结构域引入分别靶向肿瘤相关抗原Mesothelin和Glypican 3的第二代CAR分子载体中,从而构建出了整合DAP10信号的第三代CAR-T细胞(M28z10,Mbbz10,G28z10,Gbbz10),它们在体外细胞实验中显示出针对Mesothelin阳性肺癌或Glypican 3阳性肝细胞癌细胞系显著提升的效应功能,包括细胞因子(IL-2,IFN-γ,颗粒酶B和GM-CSF)分泌水平升高,对靶细胞的单次和连续杀伤活性增强,以及上调与T细胞效应功能密切相关的转录因子T-bet表达水平。更为重要的是,同时整合DAP10和CD28信号的第三代CAR-T细胞与只含有CD28信号的二代CAR-T细胞相比,在异种移植的细胞系和原代肿瘤组织小鼠模型中均显示出更强的肿瘤抑制作用。该研究结果显示DAP10信号的激活有助于提升CAR-T细胞对实体肿瘤的抗肿瘤活性。   本项目由国自然相关人才计划、省自然相关人才计划、广东省重点项目、干细胞先导项目等资助。