《2019年全球转基因观察》

  • 来源专题:转基因生物新品种培育
  • 编译者: zhangyi8606
  • 发布时间:2020-10-09
  • 近年来,转基因作物持续保持高应用率,2018年全球种植面积达到1.917亿公顷,再创新高。然而种植面积增幅下降,2018年种植面积同比仅增长1%,(2017年2.54%,2016年3%)。同时,转基因作物在世界五大转基因作物种植国的平均应用率(大豆、玉米和油菜的平均应用率)已经接近饱和,其中美国93.3%、巴西93%、阿根廷接近100%、加拿大92.5%、印度95%(数据来源于ISAAA 2018年报告)。行业整体进入平稳期,未来增长有待新兴市场政策的放开以及新产品的研发。

    2019年,全球范围内共有43项关于转基因作物的批准,涉及40个品种,有9个新的转基因作物品种获得批准(详情见表1),包括油菜(1种),棉花(4种),豇豆(1种),大豆(1种)和甘蔗(2种)。与前两年相比,批准总数和涉及的品种数均有一定程度的下滑,新批准的转基因作物品种保持稳定。下文中,AgroPages世界农化网将就以下三个方面对2019年全球范围内的转基因发展状况做一个简要的解读:1)阿根廷转基因市场;2)中国曲折的转基因道路;3)美国转基因食品标签。

    阿根廷转基因市场最近进展

    2018年,阿根廷在十大转基因作物种植国家中排名第三,转基因作物的种植面积总计达到2390万公顷,包括1800万公顷转基因大豆、550万公顷转基因玉米和37万公顷转基因棉花,转基因作物的应用率接近100%。

    阿根廷前几年的批准数量很低,在毛里西奥•马克里(Mauricio Macri)总统执政后加快了转基因作物批准的步伐。在其执政期间批准了近25个转基因性状,几乎是过去23年间批准的所有转基因性状数量的一半。尤其是2018年监管放松之后,阿根廷转基因市场迎来了爆发式的发展。其中2018年批准了8项关于转基因作物的申请,包括玉米、大豆和苜蓿。2019年更是批准了12项,占今年全球批准总数的近三分之一,包括6个转基因玉米性状,3个转基因大豆性状以及3个转基因棉花性状。

    其中10月份批准的由孟山都开发的转基因玉米(事件:MON87427 x MON89034 x MIR162 x NK603)是1996年批准第一个转基因作物以来,阿根廷历史上批准的第60个转基因作物。

    此外为了加强本国的棉花产业,缩短与巴西的技术差距。阿根廷政府致力于加强知识产权保护,以期引进更先进的转基因棉花技术。阿根廷国家种子研究所(INASE)在控制非法种子方面做了大量的工作。INASE正在制止农民使用未经授权的性状,并控制棉花种子繁育工厂,切段非法种子的生产线。今年阿根廷通过了三个新的转基因棉花性状,2月批准了能够抗草甘膦除草剂和HPPD抑制剂除草剂的转基因棉花;6月批准了GlyTol TwinLink Plus®转基因棉花,具有抗除草剂和抗虫性的性状,这是1998年BollGard推出后,第二个具有抗虫性状的转基因棉花,目前粉红色棉铃虫(Pectinophora gossypiella)已对原Bt蛋白产生了抗性,并对作物构成了严重威胁;8月批准了VIPCOT转基因棉花,具有抗虫性(鳞翅目昆虫)。其中前两个产品由巴斯夫公司商业化推广,VIPCOT属于先正达,但已经授权给了巴斯夫。

    在10月中旬的时候,阿根廷国家科学技术研究委员会(CONICET)开始推进该国首个转基因马铃薯SPT TICAR的正式登记工作,目标是明年推出转基因马铃薯产品。该产品由CONICET与生物技术公司Sidus合作,对马铃薯病毒(PVY)有抗性。

    中国曲折的转基因道路

    今年年初,农业农村部发布了2018年农业转基因生物安全证书批准清单,新批准了包括抗除草剂油菜、抗除草剂大豆等五种农业转基因生物,并批准了26项续申请的农业转基因生物。目前,中国允许种植的转基因作物仅有棉花和木瓜两种,根据ISAAA的报告,2018年中国转基因作物种植面积为290万公顷,在亚洲排在第二。第一为印度,种植了1160万公顷棉花。

    近年来尽管中国的转基因政策持续迎来利好消息,但是一直缺乏实质性的进展。从2015年“推进转基因经济作物产业化”被写入“十三五”规划,到2016年宣布将调整战略重点,推进抗虫转基因玉米的产业化进程;到2017年中国化工收购先正达以及持续的新转基因作物进口的批准,中国的转基因政策缺的始终是最后那一步。

    在2019年的最后,12月30日,农业农村部公示了192个拟颁发的“农业转基因生物安全证书”植物品种,其中包括189个棉花品种、2个玉米品种和1个大豆品种,让中国的种子行业再次看到了转机。这是继2009年原农业部向国产转基因玉米、水稻发放安全证书之后,10年来再次在主粮领域向国产转基因作物拟批准颁发安全证书。新批准的转基因玉米和大豆分别为北京大北农生物技术有限公司的抗虫抗除草剂玉米“DBN9936”,杭州瑞丰生物科技有限公司和浙江大学的抗虫抗除草剂玉米“双抗12-5”以及上海交通大学的抗除草剂大豆“SHZD32-01”。这里需要注意的是根据《农业转基因生物安全管理条例》及相应配套制度,中国转基因种子审批需经历转基因作物安全评价以及品种审定,如果要进行商业化推广,那就还要取得国务院农业行政主管部门颁发的种子生产许可证。目前,还没有粮食作物获得过这个许可证,因此还不能进行商业性种植。但是鉴于这几年来政府对于转基因政策的持续推动,行业内相信这将是未来几年中国放开转基因主粮种植迈出的重要一步。

    此外,2019年,中国种子企业在转基因作物的产业化方面也有新的突破。2019年2月,北京大北农生物技术有限公司研发的转基因大豆(事件:DBN-09004-6,具备草甘膦和草铵膦两种除草剂抗性)获得阿根廷政府的正式种植许可。这是中国公司研发的转基因作物首次在国际上获得种植许可。在每年上亿的科研投入,国内又无法产业化的现状下,大北农终于另辟蹊径,出海成功。大北农表示将立即启动该产品的中国进口法规申报程序。同时该产品正在申请乌拉圭种植许可,还将申请巴西种植许可及欧盟、日本、韩国等其他大豆主要进口市场的进口许可。

    该案例为国内的一些大型种子公司提供了新的产业化的思路,在国内转基因政策依然还不明朗的情况下,已经成熟的转基因技术与其始终停留在实验室阶段,不如考虑出海,寻求海外种植的可能性。一方面能够回收部分科研经费,另一方面也能够为未来国内的转基因产业化打下坚实的基础。同时从海外“进口”回国后,也能够加强国家粮食安全的战略考虑。

    美国转基因食品标签

    2016年美国总统奥巴马签署名为《国家生物工程食品披露标准》的法案,标志着美国转基因食品标识的争论最终尘埃落定。该法律将于2020年1月1日开始生效,并于2022年1月1日得到全面授权。任何含有转基因生物(GMO)产品或副产品的产品都必须贴有表明该事实的标签。2022年1月1日之后,如果产品不包含此标签,则该产品不含GMO成分。

    2019年,由美国农业部开发的“Bioengineered(生物工程)”(或“BE”)标签开始出现在美国杂货店出售的产品上。第一个使用新标签的是Impossible Food的碎牛肉替代品(肉替代品中包含一种来自转基因大豆的蛋白质),该食品在9月份首次出现在杂货店中。

    需要注意的是,新的法律下,使用新育种技术选育的产品,例如CRISPR,TALEN和RNAi将被排除在新的标签法之外。同时动物饲料也被排除在新标签法之外,这意味着食用了转基因饲料的动物产生的肉制品,蛋和奶制品也无需披露。此外,从转基因作物中提取的精制食品无需披露,除非它们包含可检测到的改良遗传物质。这意味着甜菜糖,大豆油和玉米甜味剂(主要来自转基因种子)将不必标注为转基因成分。

    以下是目前已批准于2019年在美国进行商业化生产和销售的转基因项目清单:AquAdvantage三文鱼,Arctic苹果,油菜籽,玉米,棉花,茄子(BARI Bt Begun品种),木瓜(抗环斑病毒的品种),菠萝(粉红果肉品种),土豆,大豆,南瓜和甜菜。

相关报告
  • 《全球转基因作物面积2017年上升2.5%》

    • 来源专题:转基因生物新品种培育
    • 编译者:zhangyi8606
    • 发布时间:2018-11-01
    • 根据国际农业生物技术应用服务组织(ISAAA)的数据,2017年全球种植转基因作物的面积增加了2.5%,达到1.898亿公顷,这是在2015年的面积出现1%的下降之后,在2016年为3%的增长率后的继续增长。 ISAAA报告指出,五个主要转基因作物种植国的采用率接近饱和,美国为94.5%,巴西为94%,阿根廷为100%,加拿大为95%,印度为93%。这五个国家占全球转基因作物面积的91.3%。 美国仍然是最大的转基因作物采用国,面积约7500万公顷。转基因玉米的种植面积高达3380万公顷,大豆超过3400万公顷,棉花近460万公顷。此外,还有120万公顷的苜蓿、876000公顷的油菜、458000公顷的甜菜、3000公顷的马铃薯和各1000公顷的苹果、南瓜和木瓜。 转基因作物在巴西种植超过5000万公顷。其中包括3370万公顷大豆、1560万公顷玉米和940000公顷棉花。 去年阿根廷转基因作物的种植面积略有减少,降至2 360万公顷,原因是转基因大豆面积下降3%,至1 810万公顷,转基因棉花面积下降38%,至250000公顷。转基因玉米种植面积增加10%,达到520万公顷。 加拿大的转基因作物种植量“前所未有”地增长了18%,达到1300万公顷以上。其中耐除草剂大豆、甜菜、木质素含量降低的苜蓿大幅度增加,种植有250万公顷转基因大豆、大约180万公顷玉米、880万公顷菜籽、15000公顷甜菜、3000公顷苜蓿和40公顷马铃薯。 印度抗虫Bt棉种植面积增加了6%,达到1140万公顷。
  • 《研究综述:2019年12月6日》

    • 来源专题:人类遗传资源和特殊生物资源流失
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2019-12-10
    • 欢迎来到2019年12月6日的研究综述,这是布罗德研究所的科学家和他们的合作者发表的最新研究的一个重复快照。 寻找增强剂 虽然我们体内的每个细胞都含有相同的基因序列,但增强子控制着基因在不同细胞类型中的表达方式,例如,确保肝细胞不会失控并开始启动肾脏基因。然而,确定和预测哪些增强子调节哪些基因的能力仍然难以捉摸。查理·富尔科、约瑟夫·纳赛尔、杰西·恩格雷茨、研究所所长兼创始主任埃里克·兰德以及来自布罗德和其他地方的同事在《自然·遗传学》杂志上描述了一种可以确定哪些增强子调节哪些基因的实验技术,以及一种预测基因组中增强子-基因连接的模型。由于先前的研究已经将增强子突变与疾病联系起来,这些新工具将对了解人类健康非常重要。 细菌测试进入噬菌体- r阶段 一种快速诊断细菌感染的方法可以帮助病人更快地康复,并防止耐药微生物的传播。每年有3.5万美国人死于耐药微生物。Roby Bhattacharyya是传染病和微生物组项目(IDMP)的核心成员,他和同事们开发了一种新的诊断方法,称为GoPhAST-R,它结合了基因型和表型测试来确定细菌的抗生素敏感性。GoPhAST-R寻找抗生素诱导的基因表达的模式,并识别关键的耐药基因以区分易感和耐药菌株。在《自然医学》杂志上,该方法可以在不到4小时内提供94%到99%的准确率,相比之下,使用标准的临床实验室方法需要28到40小时。 当质量不够大的时候 关于转录因子(TFs)如何与基因启动子一起控制基因表达、细胞表型和细胞状态的规则仍然模糊不清,部分原因是规模问题。在《自然生物技术》,卡尔•德波尔核心研究所细胞天文台特拉维夫Regev董事成员和卡拉曼和他的同事发布了巨大平行记者化验(GPRA):机器学习方法,合并与实验室系统,衡量TFs与超过1亿randomly-synthesized基因启动子序列在酵母基因表达的影响。GPRA揭示了tf -启动子结合的关键特征,并为研究基因变异如何影响基因表达和疾病风险提供了一个创建复杂、全面模型的机会。 将数据和谐地结合在一起 为了充分利用现有的单细胞rna测序(scRNA-seq)研究,研究人员需要能够收集来自各种组织、数据源、测序平台等的数据。Ilya Korsunsky,医学和人口遗传学(MPG)项目的研究所成员Soumya Raychaudhuri,和他的同事开发了Harmony,一种允许科学家整合来自多个数据集的scRNAseq数据的算法。在Nature方法中,他们展示了Harmony的能力:1)处理大型数据集;2)在集成数据中识别宽粒度和细粒度的细胞群;3)处理复杂实验中生成的数据;4)处理来自多个实验平台的数据。Harmony的R包可以在GitHub上找到。 心的读者 潜在的朊病毒疾病治疗的目的是降低大脑中的朊病毒蛋白(PrP),但目前测量脑脊液(CSF)中PrP的方法没有捕获蛋白质片段或不同的构象。Eric Vallabh Minikel、Eric Kuhn、Sonia Vallabh、研究所科学家和蛋白质组学平台主任Steven Carr及其同事开发了一种基于多重反应监测的质谱仪方法,可以精确测量人类和其他模型物种的PrP肽浓度。根据分子和细胞蛋白质组学的报道,他们发现CSF PrP随着疾病的进展而减少,所以降低PrP药物的剂量研究应该集中在有症状的高危个体上。请阅读美国生物化学和分子生物学学会发布的新闻稿。 绘制癌症中免疫细胞的多样性 调节性T细胞(treg)可削弱抗肿瘤免疫反应,因此与几种癌症的不良预后有关。为了更好地了解treg在肿瘤发展中的作用,研究人员利用单细胞RNA测序技术,在基因工程小鼠肺腺癌模型中绘制了肿瘤发展过程中这些细胞的多样性。在《细胞报告》中,由Amy Li、Rebecca Herbst、David Canner、Aviv Regev、癌症项目高级副成员Tyler Jacks及其同事领导的研究小组提供了肿瘤微环境中Tregs多样性的高分辨率视图,从而突出了治疗干预的潜在途径。 肾脏器官会竖起大拇指 从患者诱导多能干细胞(iPS)中培养的人肾脏类器官是一种很有前途的新工具,用于开发急需的精确治疗。学习如何复制这些瀑样跨“诱导多能性”细胞,Ayshwarya萨勃拉曼尼亚,Eriene-Heidi Sidhom, Maheswarareddy Emani,协会成员和肾病倡议主任安娜Greka,和他的同事们分析了约450000个细胞肾瀑样来自四个iPS细胞系,相比他们单细胞概要文件从成人和胎儿肾脏。研究小组发现,类器官的组成和发育是人类肾脏组织的可靠替代物,将类器官移植到小鼠体内可以进一步提高类器官的质量。在自然交流中学习更多。 神经系统炎症的治疗靶点 关于鞘脂代谢在调节中枢神经系统炎症和多发性硬化等疾病中的作用,人们知之甚少。Julian Avila-Pacheco、副成员Francisco Quintana、研究所科学家和代谢组学平台高级主任Clary Clish及其同事通过结合蛋白组学、代谢组学、转录组学和体内遗传微扰研究,发现了鞘脂类代谢对星形胶质细胞的影响。他们的发现发表在《细胞》杂志上,定义了一种驱动促炎性星形细胞活动的新机制,概述了线粒体抗病毒信号蛋白在中枢神经系统炎症中的新作用,并确定了鞘脂类代谢是治疗中枢神经系统炎症的一个有希望的靶点。 疟原虫将如何抵抗这种药物? 恶性疟原虫对临床使用的每一种疟疾药物都产生了迅速的耐药性。在药物开发的早期就发现这种寄生虫的分子逃逸路线,可以帮助研究人员找到更好的药物。为了解决这个问题,IDMP研究所的成员Dyann Wirth和她的团队设计了一种预测疟原虫抗性机制的方法,他们在《科学转化医学》上描述了这种方法。研究人员在体外和受感染的小鼠体内都将这种寄生虫暴露在能够阻断疟疾病毒的二氢旋转脱氢酶(DHODH)的化合物中。然后,他们选择耐药生物并对其基因组进行排序。研究小组发现,在体外和小鼠体内,耐药寄生虫也出现了类似的快速耐药性和共同突变。研究人员得出结论,选择体外耐药性可以预测体内耐药性,并认为这种方法可用于潜在新药的筛选。 解密蛋白质串扰,一次一个细胞 蛋白质参与功能途径并形成一系列复杂的相互作用来驱动细胞的行为。理解这种“相互作用组”对于理解驱动生物学的机制至关重要。尽管科学家们创造了一个有价值的“参考相互作用组”,将这些相互作用概括为一个单一的资源,但这种工具无法提供特定于不同细胞类型的信息。 Shahin Mohammadi,Jose Davila-Velderrain和Epigenomics Program准成员Manolis Kellis在Cell Systems中描述了一种计算框架(SCINET),该框架可以单细胞分辨率分析此相互作用基因组。使用scRNA-seq,SCINET可以在单个细胞中重建相互作用基因组,从而使研究人员能够识别在各种条件下受干扰的单细胞相互作用。 与ALS相关的新基因 肌萎缩性侧索硬化症(ALS)是一种迟发性神经退行性疾病,众所周知,遗传因素是造成这一疾病的危险因素。为了发现与ALS相关的新基因,由Sali Farhan和研究所成员Benjamin Neale领导的一个小组在MPG中分析了3864名患者和7839名健康个体的外显子组,这是迄今为止最大的ALS外显子组病例对照研究。研究小组观察到ALS病例中罕见的蛋白质截短遗传变异,以及与已知ALS基因和新基因DNAJC7的关联。可通过ALS知识门户网站获得ALS遗传数据的摘要统计信息。查看《自然神经科学》中的完整故事。 自闭症和多动症之间的遗传相似性 自闭症谱系障碍(ASD)和注意力缺陷多动障碍(ADHD)具有重要的遗传成分,但是要收集大量的人群进行遗传分析一直是这两者的挑战。由Kyle Satterstrom,研究所成员,MPG联合主任Mark Daly和丹麦iPSYCH研究计划的同事组成的团队,利用已归档血斑的DNA分析了大约8,000名患有ASD和/或ADHD的儿童的外显子组以及5,000个对照,以更好地了解这些疾病的遗传结构。研究人员发现,ASD和ADHD在限制基因中截短变异的负担相似,并确定MAP1A基因中截短变异与患病风险有关。从《自然神经科学》和iPSYCH的新闻稿中了解更多信息。