《【Science】超快光学技术揭示液体双电层形成机制》

  • 来源专题:新能源汽车
  • 编译者: 王晓丽
  • 发布时间:2025-04-27

  • ?研究机构?:马克斯·普朗克学会、马克斯·普朗克聚合物研究所(MPI-P)、维也纳大学

    ?研究人员?:Mischa Bonn、Alessandro Greco等

    ?研究内容与成果?:

    研究团队开发了一种基于超快激光的光学技术,首次直接观测液体中双电层(EDL)的纳米级动态形成过程。双电层是界面(如电池电极、生物细胞膜)附近正负电荷分离的关键结构,其形成速度直接影响储能设备充放电效率。

    实验中,团队通过向水中添加酸生成H?O?离子,利用强红外激光脉冲加热界面并扰动双电层,随后通过延迟激光脉冲探测反射光信号,量化离子重新平衡的动力学。结合分子动力学模拟发现,?即使在高浓度离子条件下,双电层形成仍由电场主导?,且与经典理论预测高度吻合。

    ?创新与意义?:

    突破传统电子测量技术的时间分辨率限制(亚皮秒级),首次揭示双电层形成的超快机制;验证现有理论模型在复杂体系(如生物膜、高浓度电解液)中的普适性;为优化储能设备(如超级电容器、锂离子电池)和生物能量转换系统提供新思路。该成果解决了长期困扰学界的高浓度离子体系双电层动力学争议,证明简单物理模型可描述复杂界面过程,为跨尺度界面研究开辟新途径。




    原文链接:Alessandro Greco et al, Ultrafast aqueous electric double layer dynamics, Science (2025). DOI: 10.1126/science.adu5781

  • 原文来源:https://phys.org/news/2025-04-ultrafast-optical-technique-reveals-electrical.html
相关报告
  • 《FLASH揭示光催化的超快动力学机制》

    • 来源专题:重大科技基础设施领域知识集成服务平台
    • 编译者:魏韧
    • 发布时间:2021-03-16
    • 一个国际科学家团队首次利用软X射线自由电子激光FLASH并结合理论计算的方法,在氧化物光催化剂表面,对诱导一氧化碳转化为二氧化碳的光进行实时研究。他们发表在ACS Catalysis杂志上的成果显示,一氧化碳到二氧化碳的光转化发生在超快光学激光脉冲触发反应后的1.2到2.8皮秒之间。 光催化剂能促进由光触发的化学反应,具有一系列潜在的应用,包括空气和水净化以及自表面清洁。为确保能够有效使用光催化剂并优化其性能,了解活性光催化剂表面上的早期光动力学至关重要。 二氧化钛是最具工业应用前景的光催化剂之一。目前该研究小组利用FLASH自由电子激光的超短激光脉冲对其进行研究。将二氧化钛暴露在一氧化碳和氧气的混合气体中,将波长770纳米的光学激光与FLASH飞秒X射线激光脉冲同步。光学激光脉冲触发一氧化碳的光催化氧化过程,而FLASH脉冲则被用于实时研究表面上的反应动力机制,利用FLASH的超导射频加速器技术,能够在皮秒时间尺度上直接实时跟踪光反应。 利用软X射线光电子能谱,可以较高的表面灵敏度识别单个化合物。通过收集光反应触发后特定时间内的一系列光电子能谱,该团队得以监测光电子能谱的演变,并观察新化合物的形成瞬态。该小组在研究结果基础上进行假设,在光照后最初的1.2皮秒内,发生氧活化过程,电子从氧化钛表面转移到吸附在表面的氧分子上。在光照后1.2到2.8皮秒之间,观察到由一氧化碳氧化而成的二氧化碳。 不来梅大学计算材料科学中心(BCCMS)和马克斯·普朗克物质结构与动力学研究所的科学家合作进行理论预测,氧吸附在光催化剂表面导致电荷转移复合物(charge transfer complex)的形成。这意味着在光子能量为1.6 eV(770 nm)的激光照射下,电子从二氧化钛直接转移到吸附于其表面的氧气上,可以触发反应。 研究可能开辟一条新的研究途径,即利用软X射线自由电子激光研究催化剂表面光反应关键的第一步,这也是汉堡超快成像中心卓越集群的研究课题之一:先进的物质成像技术。
  • 《Science:从结构上揭示I型CRISPR-Cas系统降解靶DNA机制》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2018-07-11
    • 作为最流行的CRISPR 系统,I型CRISPR-Cas的特征是有序的靶标搜索和降解。首先,多亚基监测复合物Cascade(用于抗病毒防御的CRISPR相关复合物)识别相匹配的两侧具有最佳的前间区序列邻近基序(protospacer-adjacent motif, PAM)的双链DNA靶标,促进CRISPR RNA(crRNA)和靶DNA链之间形成异源双链体,并将非靶DNA链置换掉,从而导致在靶位点上形成R-环(R-loop)。随后,将具有解螺旋酶活性和核酸酶活性的酶Cas3特异性地招募到Cascade/R-loop上并切割和渐进性地降解靶DNA链。来自褐色嗜热裂孢菌(Thermobifida fusca, Tfu)的I-E型Cascade/R-loop和Cas3/单链DNA(ssDNA)复合物的高分辨率结构阐明了PAM识别和R-环形成机制。然而,Cas3招募、DNA切割和降解机制仍然是难以捉摸的。 在一项新的研究中,来自美国康奈尔大学和哈佛医学院的研究人员重建出TfuCascade/R-loop/Cas3(即来自褐色嗜热裂孢菌的Cascade/R-loop/Cas3)三元复合物,并利用单颗粒低温电镜技术(cryo-EM)解析出它在R-环切割前状态和R-环切割后状态下的结构。这些结果为理解I型CRISPR-Cas系统中crRNA指导的DNA降解提供了结构基础。相关研究结果发表在2018年7月6日的Science期刊上,论文标题为“Structure basis for RNA-guided DNA degradation by Cascade and Cas3”。 这些研究人员解析出TfuCascade/R-loop/Cas3在非靶DNA链切割前状态下的分辨率为3.7埃的低温电镜图。Cas3的结合不会引起形成R-环的Cascade复合物发生进一步构象变化,这提示着Cascade-Cas3相互作用在很大程度上是一种构象捕获机制而不是一种诱导契合机制。Cas3-Cascade相互作用完全是由Cascade中的Cse1亚基介导的。Cas3对Cascade的识别是由于与Cascade/R-loop在电荷和表面轮廓上是互补的,但与Cascade的种泡状态(seed-bubble state)并不是互补的。这是因为在R-环充分形成之前,Cse1的C-末端结构域处于一种替代性方向。通过与Cse1的两个结构域进行广泛接触,Cas3能够检测Cse1的表面轮廓发生变化,从而排斥处于这样的功能状态下的Cascade。有条件地将Cas3招募到Cascade上就能够避免错误靶向仅具有部分互补性的DNA。 再者,这些研究人员提供了直接的证据表明一种底物移交机制对I-E型CRISPR干扰是至关重要的。Cas3的HD核酸酶结构域直接捕获非靶DNA链用于链切割,而且这种作用完全绕过了它的解旋酶结构域。这种底物捕获依赖于非靶DNA链中存在的柔性凸起,而且这种切割位点偏好性是由这种招募通路预先确定的。 这些研究人员进一步解析出TfuCascade/R-loop/Cas3在非靶DNA链切割后状态下的分辨率为4.7埃的结构,这就允许他们鉴定出与这种链切割反应相伴随的结构变化。这种结构揭示出由于增加的柔性,R环区域中的完整非靶DNA链消失了。一旦腺苷5'-三磷酸(ATP)水解,与PAM相邻的一半非靶DNA链自发地重新定位到Cas3中的解旋酶结构域的开口处。因此,在ATP水解时,Cas3的解旋酶结构域让非靶DNA链通过它自身并进一步进入Cas3的HD核酸酶结构域,从而进入一种渐进性DNA降解模式。 总之,这些研究人员描述了导致I-E型CRISPR干扰的分子事件的结构-功能特征。CRISPR干扰的出现在Cas3招募步骤中受到严格控制,从而降低脱靶效应。然而,当切割非靶DNA链时,I型CRISPR-Cas系统在靶标破坏方面表现优异,这是因为Cas3渐进性地降解DNA而不是停下来产生双链DNA断裂。这些特征可能解释着为什么I型CRISPR-Cas系统进化成为自然界中最常见的CRISPR-Cas系统。观察I型CRISPR-Cas系统是否可能转化为一种具有与Cas9不同的实用性的基因组编辑工具将是令人关注的。